
Modular Design of High-Throughput,
Low-Latency Sorting Units

Amin Farmahini-Farahani, Henry J. Duwe III,

Michael J. Schulte, Senior Member, IEEE, and Katherine Compton, Member, IEEE

Abstract—High-throughput and low-latency sorting is a key requirement in many applications that deal with large amounts of data.

This paper presents efficient techniques for designing high-throughput, low-latency sorting units. Our sorting architectures utilize

modular design techniques that hierarchically construct large sorting units from smaller building blocks. The sorting units are optimized

for situations in which only the M largest numbers from N inputs are needed, because this situation commonly occurs in many

applications for scientific computing, data mining, network processing, digital signal processing, and high-energy physics. We utilize

our proposed techniques to design parameterized, pipelined, and modular sorting units. A detailed analysis of these sorting units

indicates that as the number of inputs increases their resource requirements scale linearly, their latencies scale logarithmically, and

their frequencies remain almost constant. When synthesized to a 65-nm TSMC technology, a pipelined 256-to-4 sorting unit with

19 stages can perform more than 2.7 billion sorts per second with a latency of about 7 ns per sort. We also propose iterative sorting

techniques, in which a small sorting unit is used several times to find the largest values.

Index Terms—VLSI designs, design optimization, parallel sorting algorithms, partial sorting, iterative sorting

Ç

1 INTRODUCTION

SORTING is an important operation in a wide range of
applications including data mining, databases [1], [2],

[3], digital signal processing [4], [5], network processing,
communication switching systems [6], [7], scientific com-
puting [8], searching, scheduling [9], pattern recognition,
robotics [10], image and video processing [11], [12], [13],
and high-energy physics (HEP) [14]. For applications that
require very high-speed sorting, hardware sorting units are
often implemented using either ASICs or FPGAs to meet
performance requirements [3], [13], [15], [16], [17]. Based on
target applications, hardware sorting units vary greatly not
only in architecture but also in the number of inputs and
the width of inputs that they can process. For instance, only
9 to 25 inputs need to be processed in certain filters [11],
while the number of inputs can vary from 25 to 81 (or even
higher) in certain image processing applications [18]. High-
speed sorters on FPGAs in HEP applications deal with 128
to 256 data samples in 100-ns processing cycles [14], [19].
Thousands of inputs are sorted in video [13] and database
applications [3], [20]. In general, inputs can be b-bit integers
(8 � b � 64), floating-point numbers, or even compressed
data values.

Most previous research on sorting units has focused on
the situation in which the sorting unit must produce all of
its inputs in sorted (increasing or decreasing) order. In

many applications, however, only the M largest (or
smallest) output values need to be selected from a total
of N input values, where M < N . For example, in many
HEP applications, only the M most energetic particles may
be of interest. Similarly, in signal processing applications,
only the M strongest signals or M closest points in space
may need to be analyzed. In data mining, searching, and
database systems, only top query outputs that score the
most with respect to a given search key may need further
processing. Furthermore, depending on the application,
the M largest (smallest) outputs may not need to be in
order. We refer to units that only return the M largest
(smallest) outputs, but do not guarantee that these
M outputs are sorted, as max(min)-set-selection units.
We refer to units that only return the M largest (smallest)
outputs in sorted order as partial sorting units.

This paper focuses on the design of partial sorting and
max-set-selection units that return the M ¼ 2m largest
values from N ¼ 2n inputs, where m and n are each whole
numbers and 1 �M < N .1 We refer to these units as
N-to-M partial sorting and max-set-selection units. Our
units discard small inputs as early as possible to reduce
the sorting units’ latency and hardware complexity. We
investigate the design and VLSI implementations of partial
sorting and max-set-selection units with low latency, high
throughput, and modest resource requirements. Our de-
signs are based on Batcher’s [25] bitonic and odd-even
merge sorting networks, which are widely used in VLSI
and FPGA implementations due to their simplicity,
regularity, and parallelism. The proposed units are
scalable in terms of both the number of inputs and
the number of outputs. We also present a generalized

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013 1389

. A. Farmahini-Farahani, H.J. Duwe III, and K. Compton are with the
Department of Electrical and Computer Engineering, University of
Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706.
E-mail: {farmahinifar, duweiii}@wisc.edu, kati@engr.wisc.edu.

. M.J. Schulte is with Advanced Micro Devices, Inc., Austin, TX 78741.
E-mail: michael.schulte@amd.com.

Manuscript received 8 Aug. 2011; revised 2 Apr. 2012; accepted 12 Apr. 2012;
published online 23 May 2012.
Recommended for acceptance by P. Montuschi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-08-0531.
Digital Object Identifier no. 10.1109/TC.2012.108.

1. Straightforward modifications to our designs allow the M smallest
values, rather than the M largest values, to be output. It is also feasible to
remove the current restriction that M and N are integer powers of two
using techniques similar to those presented in [6], [21], [22], [23], [24].

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

platform-independent methodology for designing high-
performance pipelined partial sorting and max-set-
selection units for which the width of the data to be
sorted and the pipeline depth can easily be varied.

This research is an extension of our previous work on
FPGA-based sorting units in the Large Hadron Collider
(LHC) [19]. The main contributions of this paper and [19] are:

. Modular techniques for designing N-to-M partial
sorting and max-set-selection units. The units are
composed of small and regular building blocks
connected in a modular fashion, thereby reducing
verification time and simplifying the design process.
Our designs have low latency, high throughput, and
modest resource requirements, can be pipelined
easily, have parameterized pipeline depth and data
widths, and scale well to large values of N and M.
Moreover, our techniques are independent of the
bit-width and type of input values.

. A detailed analysis of our proposed partial sorting
and max-set-selection units that includes both
theoretical and synthesis estimates of our units’
latency, throughput, and resource requirements.
This analysis indicates that for a given number of
outputs, resource requirements scale linearly with
the number of inputs, latency scales logarithmically
with the number of inputs, and the frequency
remains nearly constant. Compared to conventional
sorting units, which return all of their inputs in
sorted order, our N-to-M partial sorting and max-
set-selection units have much lower latency and area.

. A discussion of how the proposed max-set-selection
units may be utilized iteratively to find the largest
values from a set of data. This approach may lower
resource requirements, storage cost, and I/O re-
quirements at the cost of increased latency and
decreased throughput.

To the best of our knowledge, this is the first time that
N-to-M partial sorting networks have been presented and
analyzed. In this work, we propose parallel sorting
algorithms for finding/sorting the M largest values from
N inputs and then design scalable architectures based on
the proposed algorithms. Our N-to-M partial sorting
networks have lower latency than any previous sorting
designs when producing only the M largest values.
Furthermore, our N-to-M max-set-selection units further
decrease the latency and resource requirements by not
producing their outputs in sorted order. Our parallel units
target applications that require very low-latency sorting.
Our iterative units target applications that require moder-
ate-latency sorting by trading increased latency for reduced
area and I/O bandwidth. Although our sorting units were
originally designed for HEP experiments in the LHC, our
methodology can be utilized to design high-speed sorting
and max-set-selection units for a wide range of applications.

The remainder of this paper is organized as follows:
Section 2 describes previous sorting networks and provides
background information. Section 3 presents our partial
sorting and max-set-selection units. Section 4 gives synth-
esis results for our units. Section 5 shows how these units
are used iteratively to sort data. Section 6 discusses related
research on sorting algorithms and architectures. Section 7
concludes the paper.

2 PARALLEL SORTING NETWORKS

A sorting network is a collection of interconnected

compare-and-exchange (CAE) blocks that guides a parallel

set of inputs to a parallel set of outputs in sorted order. Each

CAE block has two inputs and two outputs. If the input

values are already in order, they are directed to the

corresponding outputs; otherwise, they are swapped.
There are two types of CAE blocks, called increasing and

decreasing CAE blocks, used in hardware-based sorting

units. Fig. 1 shows the high-level implementations (left) and

schematic symbols (right) for three building blocks used in

previous sorting units and in our designs. Fig. 1a shows an

increasing CAE block, which outputs its two inputs in

ascending order. A decreasing CAE block, shown in Fig. 1b,

outputs its inputs in descending order. Decreasing and

increasing CAE blocks are identical, except for their wiring.

Each CAE block contains a comparator and two multi-

plexers. We also define Max units which are used in our

designs. A Max unit, shown in Fig. 1c, takes two inputs and

returns the larger input. Note that the � and � symbols

determine the type of the block in Fig. 1.
A sorting network usually consists of a series of stages in

which each stage contains a number of CAE blocks that

operate in parallel. The latency of a sorting network is

proportional to its depth (the number of consecutive CAE

blocks). Two popular parallel sorting networks that cur-

rently have the lowest known latency for hardware

implementation are the bitonic and odd-even merge sorting

networks proposed by Batcher [25]. The structure of a

sorting network is fixed, regardless of the value of the

numbers being sorted and the results of the comparisons.

Sorting networks are a common solution for hardware-

based sorting. Their parallel nature allows them to perform

sorting much faster than the OðN � logðNÞÞ time achievable

by the fastest sequential software-based sorting algorithms.

A sorting network may also be pipelined to further increase

throughput.

1390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 1. The high-level implementation (left) and schematic symbol (right)
of building blocks for sorting networks.

2.1 Bitonic Sorting Networks

Concatenating an ascending and a descending sequence
forms a single bitonic sequence. A bitonic sorting network
recursively merges an ascending and a descending se-
quences each of length N=2 to make a sorted sequence of
length N [25]. Each bitonic sorting network is composed of a
number of bitonic merging units to merge bitonic sequences.

A K-input bitonic merging unit (denoted as BM-K)
contains log2ðKÞ stages of parallel CAE blocks, where each
stage corresponds to a CAE stage with K=2 CAE blocks.
Therefore, a BM-K requires log2ðKÞ �K=2 CAE blocks. For
instance, an increasing BM-8 (denoted as �BM� 8) unit has
three CAE stages and requires 3� ð8=2Þ ¼ 12 CAE blocks,
as shown in Fig. 2. In this figure, the arrows point in the
direction of increasing numbers and the dashed lines
separate CAE stages. A BM-K unit is itself composed of a
level of K=2 parallel CAE blocks followed by two parallel
BM-(K=2) units. The �BM� 8 is constructed from a level of
four parallel CAE blocks followed by two parallel BM-4
units that have four CAE blocks each. A decreasing BM-8
(denoted as �BM� 8) has a similar structure to an
increasing BM-8, but it is only constructed from decreasing
CAE blocks and the sorted outputs are in descending order.

An 8-input bitonic sorting unit has four parallel BM-2
units, two parallel BM-4 units, and one BM-8 unit, as
shown in Fig. 3. Thus, this sorting unit has 1þ 2þ 3 ¼ 6
CAE stages. Assuming the unit is pipelined so each stage
takes one clock cycle, it can generate the sorted outputs in
six cycles and can begin a new sort each cycle. In an
N-input bitonic sorting unit, there are equal numbers of
increasing and decreasing BM units in each level, excluding
the last level, which has only either an increasing BM-N
unit or a decreasing BM-N unit. In general, an N-input
bitonic sorting unit is composed of N=2 BM-2 units, N=4
BM-4 units, N=8 BM-8 units, ..., two BM-N=2 units, and one
BM-N unit. In this design, BM-K units are followed by BM-
ð2KÞ unit(s), where K ¼ 2; 4; 8; . . . ; N=2; N , 2 � K � N and
K and N are integer powers of 2. Therefore, because an
N-input bitonic sorting unit has log2ðNÞ consecutive

BM-K units, where each BM-K unit has log2ðKÞ CAE
stages, an N-input bitonic sorting unit has log2ðNÞ �
ðlog2ðNÞ þ 1Þ=2 CAE stages. Since each stage has N=2
CAE blocks, the total number of CAE blocks in an N-input
bitonic sorting unit is N � log2ðNÞ � ðlog2ðNÞ þ 1Þ=4. For
example, 16-input, 32-input, and 256-input bitonic sorting
units require 10, 15, and 36 CAE stages and have 80, 240,
and 4,608 CAE blocks, respectively.

2.2 Odd-Even Merge Sorting Networks

An odd-even merge sorting network recursively merges
two ascending sequences of length K=2 to make a sorted
sequence of length K. Each odd-even merge sorting
network is composed of a number of odd-even merging
units. A K-input odd-even merging unit (OEM-K) merges
two ascending input sequences into a single ascending
output sequence. It contains log2ðKÞ CAE stages, where
each stage has between K=4 and K=2 CAE blocks. An
OEM-K takes two length K=2 ascending sequences, A and
B. The OEM-K merges the input values having odd indices
in A with the input values having odd indices in B, and also
merges input values in A and B having even indices. The
result is a sorted sequence of values with odd indices (SO)
and a sorted sequence of values with even indices (SE). SO
and SE are generated recursively, separately, and in
parallel. In the final stage, the SO and SE sequences are
merged to generate a sorted sequence with K values, S0 to
SK�1. The merging process is simply a CAE of values in the
SO and SE sequences.

An 8-input odd-even merging unit is shown in Fig. 4.
An OEM-K unit is composed of two parallel OEM-K=2
units, followed by a level of (K=2� 1) parallel CAE blocks.
Unlike BM units, OEM units are only built from increasing
CAE blocks. The total number of CAE blocks for an OEM-
K unit is ðK=2Þ � ðlog2ðKÞ � 1Þ þ 1 ¼ log2ðK=2Þ � ðK=2Þ þ
1. Thus, an OEM-8 unit has three CAE stages and 2� 4þ
1 ¼ 9 CAE blocks. It is constructed from two parallel OEM-
4 units that each have three parallel CAE blocks followed
by a level of three parallel CAE blocks.

An 8-input odd-even merge sorting unit has four OEM-
2 units, two OEM-4 units, and one OEM-8 unit, as shown in

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1391

Fig. 2. An increasing 8-input bitonic merging unit (�BM� 8) that is
composed of four parallel CAE blocks followed by two parallel BM-4
units. The bitonic input sequence {2, 3, 6, 7, 5, 4, 1, 0} is the
concatenation of the increasing sequence {2, 3, 6, 7} and the decreasing
sequence {5, 4, 1, 0}.

Fig. 3. The CAE network for an 8-input bitonic sorting unit with six CAE
stages and 24 CAE blocks, made up of increasing (�) and decreasing
(�) bitonic merging units. Arrows point in the direction of increasing
values.

Fig. 5. It requires four parallel OEM-2 units, two parallel
OEM-4 units, and a single OEM-8 unit, leading to a sorting
unit with 1þ 2þ 3 ¼ 6 CAE stages. Assuming the unit is
pipelined with one stage per clock cycle, it can generate the
sorted outputs in six cycles. In general, an N-input odd-
even merge sorting unit is composed of N=2 OEM-2 units,2

N=4 OEM-4 units, N=8 OEM-8 units, ..., two OEM-N=2
units, and one OEM-N unit. In this design, OEM-K units
are followed by OEM-2K unit(s), where K ¼ 2; 4; 8; . . . ;
N=2; N , and K and N are integers power of 2. Therefore,
because an N-input odd-even merge sorting unit is
composed of log2ðNÞ consecutive OEM-K units, where
each OEM-K unit has log2ðKÞ CAE stages, an N-input odd-
even merge sorting unit has ðlog2ðNÞÞ � ðlog2ðNÞ þ 1Þ
stages. This is equivalent to the number of CAE stages in
an N-input bitonic sorting unit. In addition, because an
OEM-K has log2ðK=2Þ � ðK=2Þ þ 1 CAE blocks, an N-input
odd-even merge sorting unit has N=4� ðlog2ðNÞÞ �
ðlog2ðNÞ � 1Þ þN � 1 CAE blocks.

2.3 Designing Large Sorting Networks

Based on the idea behind the bitonic and odd-even merge
algorithms, large sorting units can be built using large
merging units [25] that consist of multiple CAE stages of
increasingly larger size. Table 1 summarizes the required
number of CAE blocks and stages for bitonic and odd-even
merge sorting units. Both N-input bitonic and odd-even
merge sorting units have a time complexity (depth) of
Oðlog2

2ðNÞÞ CAE stages and have an area complexity of
OðN � log2

2ðNÞÞ CAE blocks. An N-input, N-output bitonic
or odd-even merge complete sorting unit is composed
of ðlog2 NÞ � ðlog2 N þ 1Þ=2 CAE stages, where N ¼ 2n.
However, the required number of CAE blocks differs for
each type of sorting unit. Bitonic and odd-even merge
sorting unit with 2n inputs and 2n outputs have 2n�2 � n�
ðnþ 1Þ and 2n�2 � n� ðn� 1Þ þ 2n � 1 CAE blocks, respec-
tively. Thus, odd-even merge sorting units have lower
resource requirements than bitonic sorting units, but may
have more complex wiring. The difference in the number
of CAE blocks between bitonic and odd-even merge

sorting units is 2n�1 � ðn� 2Þ þ 1, showing that the
difference in the number of CAE blocks increases linearly
with the number of inputs.

3 PROPOSED PARTIAL SORTING AND MAX-SET-
SELECTION UNITS

In many applications, it is not necessary to return all of the
sorted inputs. Applications often only need to determine
the M largest or M smallest numbers from N inputs, where
M < N and M and N are both integer powers of two
(M ¼ 2m, N ¼ 2n). Partial sorters provide the 2m largest
values in sorted order, and max-set-selection units provide
the 2m largest values in arbitrary order. Partial sorters and
max-set-selection units are key components in many
applications. For example, in the LHC [26] low-latency
max-set-selection units identify important particle interac-
tions that correspond to high-energy collisions [19]. In
multimedia applications, partial sorters speed up data
sorting algorithms [12]. Moreover, auxiliary max-set-selec-
tion units can cooperate with general-purpose processing
units in embedded and database management systems to
accelerate data search and sort algorithms. In cases such as
this, Batcher’s algorithms can be optimized to generate only
the 2m largest numbers from 2n inputs with less latency and
fewer CAE blocks than a complete sorting network.

3.1 4-Output Max-Set-Selection and Partial Sorting
Units

We first discuss 8-to-4 max-set-selection units and then
extend our technique to larger 2n-to-4 max-set-selection and

1392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 4. An 8-input odd-even merge unit (OEM-8) that is composed of two
OEM-4 units and a level of three parallel CAE blocks.

2. BM-2 and OEM-2 units have the same structure.

Fig. 5. The CAE network for an 8-input odd-even merge sorting unit with
six CAE stages and 19 CAE blocks.

TABLE 1
The Required Number of CAE Blocks and CAE Stages
for 2n-Input Bitonic and Odd-Even Merge Sorting Units

partial sorting units. To design 2n-to-4 max-set-selection
units, we take advantage of the fact that only the four
largest inputs are needed, in no particular order, to decrease
the resource requirements and the number of CAE stages.

3.1.1 8-to-4 Max-Set-Selection Units

To illustrate our technique, we first present the design of a
refined 8-input bitonic sorting unit, called an 8-to-4 bitonic
max-set-selection unit, that only returns the four largest
numbers. A special feature of bitonic sequences is that
performing Max operations on two sorted sequences (one
increasing and the other one decreasing) each ofK numbers,
generates two new sequences of K numbers in which
numbers in one sequence are all less than numbers in the
other sequence. In BM-K units, the first level of parallel CAE
blocks partitions the input numbers into two (K=2)-number
subsets: The smaller numbers and the larger numbers.
However, the first level of parallel CAE blocks in OEM units
must be rewired to correctly generate the smaller and larger
subsets of numbers.

Figs. 6 and 7 show 8-to-4 max-set-selection units that
use bitonic and odd-even merge algorithms, respectively.
As shown in Fig. 6, the BM-8 unit in Fig. 3 is replaced with
a level of Max units that has the same wiring as the first
level of parallel CAE blocks in the BM-8 unit. Fig. 7

illustrates that the OEM-8 unit in Fig. 5 is replaced with a
level of Max units with wirings that differ from the first
level of parallel CAE blocks in the OEM-8 unit. These
modifications decrease the required number of CAE stages
from six in 8-input sorting units to four in 8-to-4 max-set-
selection units.

3.1.2 BM-8-to-4 and 8-to-4 Partial Sorting Units

The 8-to-4 max-set-selection units, however, cannot be used
directly to form larger sorting or max-set-selection units
because the outputs of the 8-to-4 max-set-selection units in
Figs. 6 and 7 are not in a specific order. Since inputs to
BM units should be a bitonic sequence and inputs to OEM
units should be two ascending sequences, these designs
cannot be connected directly to other BM or OEM units.

To solve this problem, we have designed a new merging
unit called a BM-8-to-4 unit, shown as the right-most block
in Figs. 8 and 9. A BM-8-to-4 unit is an 8-input bitonic
merging unit that outputs only the four largest values in
either ascending � or descending � order. Fig. 8 depicts our
proposed 8-to-4 bitonic partial sorting unit that returns the
four largest values from its eight inputs in ascending order.
Compared to the 8-input bitonic sorting unit shown in
Fig. 3, it needs fewer CAE blocks and the BM-8 unit is
replaced with a BM-8-to-4 unit. A descending 8-to-4 partial
sorting unit has a similar structure. A BM-8-to-4 unit has a

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1393

Fig. 6. The CAE network for an 8-to-4 bitonic max-set-selection unit with
four CAE stages and 16 CAE blocks.

Fig. 7. The CAE network for an 8-to-4 odd-even merge max-set-
selection unit with four CAE stages and 14 CAE blocks.

Fig. 8. The CAE network for an 8-to-4 bitonic partial sorting unit with
six CAE stages and 20 CAE blocks.

Fig. 9. The CAE network for an 8-to-4 odd-even merge partial sorting
unit with six CAE stages and 18 CAE blocks.

level of four parallel CAE blocks followed by a BM-4 unit.
With this approach, the output of an 8-to-4 bitonic partial
sorting unit can be fed to other bitonic merging units.

Fig. 9 depicts our proposed 8-to-4 odd-even merge
partial sorting unit that returns the four largest values from
its eight inputs in ascending order. Compared to the 8-input
odd-even merge sorting unit in Fig. 5, it needs fewer CAE
blocks and the OEM-8 unit is replaced with a BM-8-to-4
unit. In fact, the partial sorting unit shown in Fig. 9 is a
hybrid unit composed of bitonic and odd-even merging
units. Since a bitonic merging unit takes only a bitonic
sequence, the inputs to the BM-8-to-4 unit in Fig. 9 are
rewired to convert the two sorted sequences to a bitonic
sequence. This way, the output of odd-even merging units
can be fed to bitonic merging units. We could also propose
an OEM-8-to-4 unit to avoid the rewiring technique.
However, since an OEM-8-to-4 unit requires more registers
than a BM-8-to-4, only BM-2kþ1-to-2k units are used
throughout the paper. Note that only increasing BM-8-to-4
units are used in our proposed odd-even merge sorting
unit, while both increasing and decreasing BM-8-to-4 units
are used in the bitonic sorting unit.

3.1.3 2n-to-4 Max-Set-Selection and Partial Sorting

Units

To design larger 2n-to-4 max-set-selection units, we can take
advantage of the fact that BM-8-to-4 units can be combined
to make larger units. Since BM-8-to-4 units generate sorted
outputs, these outputs can feed other BM-8-to-4 units. We
can build larger 2n-to-4 bitonic max-set-selection units using
BM-2, BM-4, BM-8-to-4, and Max-4 units. We can also build
larger 2n-to-4 odd-even merge max-set-selection units using
OEM-2, OEM-4, BM-8-to-4, and Max-4 units. BM-2, BM-4,
BM-8, BM-8-to-4, and Max-4 units require 1, 4, 12, 8, and
4 CAE blocks, respectively. OEM-4 and OEM-8 units
require 3 and 9 CAE blocks, respectively.

Figs. 10 and 11 show the structures of 16-to-4 and 32-to-4
bitonic max-set-selection units that utilize multiple BM-8-to-
4 units. In these designs, smaller numbers are discarded in

stages as early as possible to reduce the total number of
CAE stages and CAE blocks. A 16-to-4 bitonic max-set-
selection unit has one level of parallel BM-8-to-4 units,
while a 32-to-4 bitonic max-set-selection unit employs two
levels of parallel BM-8-to-4 units.

Fig. 12 depicts the high-level structure of a 32-to-4 odd-
even merge max-set-selection unit that utilizes several OEM
and BM-8-to-4 units. Unlike bitonic max-set-selection and
partial sorting units, odd-even merge units only use
increasing merging units, which is an advantage in terms
of simplicity of design. On the other hand, as shown in
Fig. 12, the outputs of OEM-4 units are rewired to feed BM-
8-to-4 units, which is a disadvantage. In general, 2n-to-4
max-set-selection units have n� 3 levels of parallel BM-8-
to-4 units for n > 3.

To make a 2n-to-4 partial sorting unit, the last level of a
2n-to-4 max-set-selection unit, which is a Max-4 unit, is
replaced by a BM-8-to-4 unit to generate outputs in sorted
order. This increases the number of CAE stages and the
number of CAE blocks by 2 and 4, respectively.

Table 2 shows the resource requirements and the number
of CAE stages for our proposed 2n-to-4 and 2n-to-8 max-set-
selection units. The required number of CAE stages for a
2n-to-4 bitonic max-set-selection unit can be calculated
based on the fact that it is composed of a level of parallel
BM-2 units, a level of parallel BM-4 units, n� 3 levels of
parallel BM-8-to-4 units, and a Max-4 unit. Similarly, the
required number of CAE blocks can be calculated based on
the fact that there are 2n�1 BM-2 units, 2n�2 BM-4 units,
2n�2 � 2 BM-8-to-4 units, and one Max-4 unit in a 2n-to-4
bitonic max-set-selection unit. Both 2n-to-4 bitonic and odd-
even merge max-set-selection units have 3� n� 5 CAE
stages for n � 3. 2n-to-4 bitonic and odd-even merge max-
set-selection units require 7� 2n�1 � 12 and 13� 2n�2 � 12
CAE blocks, respectively.

Tables 1 and 2 indicate significant improvements of
max-set-selection units compared to the conventional
complete sorting units in terms of both the number of
CAE stages and the required number of CAE blocks. For
example, while a 256-input complete sorting unit has 36
CAE stages, a 256-to-4 max-set-selection unit has 19 CAE
stages, and a 256-to-4 partial sorting unit has 21 CAE
stages. As shown in Table 1, a 256-input bitonic sorting
units requires 4,608 CAE blocks. However, a 256-to-4
bitonic max-set-selection unit and a 256-to-4 bitonic partial
sorting unit require 884 and 888 CAE blocks, respectively.
Similarly, as shown in Table 1, a 256-input odd-even merge

1394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 10. A 16-to-4 bitonic max-set-selection unit.

Fig. 11. A 32-to-4 bitonic max-set-selection unit.

Fig. 12. A 32-to-4 odd-even merge max-set-selection unit.

sorting unit requires 3,839 CAE blocks. However, a 256-to-4
odd-even merge max-set-selection unit and a 256-to-4 odd-
even merge partial sorting unit require 820 and 824 CAE
blocks, respectively.

Table 2 shows how max-set-selection units can be built
from BM/OEM and Max units. For instance, to implement
a 256-to-4 max-set-selection unit, 128 BM-2/OEM-2 units,
64 BM-4/OEM-4 units, 62 BM-8-to-4 units, and a Max-4
unit are needed. In general, odd-even merge max-set-
selection units need fewer CAE blocks than the correspond-
ing bitonic max-set-selection units, but bitonic max-set-
selection units have more regular structures and are easier
to design. Table 2 indicates that the fastest 256-to-4 max-set-
selection units have a latency of 19 clock cycles (assuming
each CAE stage takes one clock cycle). In comparison,
conventional 256-input sorting units require 36 clock cycles
to sort all 256 data values.

3.2 2n-to-2m Max-Set-Selection and Partial Sorting
Units

Our proposed techniques can be extended to cover a wide
range of sorting and max-set-selection units. In the previous
section, 2n-to-4 max-set-selection units (with n > 3) utilize
BM-8-to-4 units to select the four largest values out of a
bitonic sequence with eight values. The sorted outputs of
BM-8-to-4 units are then combined to form bitonic
sequences that are fed to the next stage of BM-8-to-4 units
or a Max-4 unit. The smallest values are discarded in the
earlier stages to reduce resources and latency.

3.2.1 Modular Max-Set-Seletion Units

A similar approach can be used to design 2n-to-2m max-set-
selection units with BM-2mþ1-to-2m merging units. Starting
from unsorted inputs and by following Batcher’s algo-
rithms, small sorted sequences are constructed using either
BM or OEM units. When 2n�m sorted sequences of length
2m are generated, each pair of sorted sequences of length 2m

is fed to a BM-2mþ1-to-2m unit to produce the 2m largest

values in sorted order and discard the 2m smallest values.

Using BM-2mþ1-to-2m units, this process continues until

only two sorted sequences of length 2m are left. These two

sorted sequences contain the 2mþ1 largest values from the

2n input values. In the final stage, a Max-2m unit returns the

2m largest values in arbitrary order.
With this approach, a 2n-to-2m bitonic or odd-even merge

max-set-selection unit with n > m has a total of (2n�m � 2)

BM-2mþ1-to-2m merging units in n�m� 1 levels, where

each BM-2mþ1-to-2m unit is composed of a level of 2m parallel

CAE blocks and a BM-2m unit.3 For example, a bitonic 128-to-

16 max-set-selection unit has 64 BM-2, 32 BM-4, 16 BM-8,

eight BM-16, six BM-32-to-16, and one Max-16 units, where

each BM-32-to-16 unit has a level of 16 parallel CAE blocks

and a BM-16 unit. Similarly, a 128-to-16 odd-even merge

max-set-selection unit, shown in Fig. 13, has 64 OEM-2,

32 OEM-4, 16 OEM-8, eight OEM-16, six BM-32-to-16, and

one Max-16 unit. Table 2 shows the structure of 2n-to-4 and

2n-to-8 max-set-selection units.

3.2.2 Modular Partial Sorting Units

We can easily modify max-set-selection units to produce

their outputs in ascending order rather than arbitrary order.

To design a 2n-to-2m partial sorting unit that takes 2n inputs

and returns 2m sorted outputs, the Max-2m unit in a 2n-to-

2m max-set-selection unit is replaced with a BM-2mþ1-to-

2m unit, producing outputs in ascending order. Thus, a 2n-

to-2m partial sorting unit has a total of (2n�m � 1) BM-2mþ1-

to-2m merging units. This increases the number of CAE

stages and the number of CAE blocks for a 2n-to-2m sorting

unit over its corresponding max-set-selection unit by m and

2m�1 �m, respectively.

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1395

TABLE 2
Structure and number of CAE stages and CAE blocks for 2n-to-4 and 2n-to-8 bitonic

and odd-even merge max-set-selection units made up of smaller merging units

The numbers in parentheses under “Structure” show the required number of each unit.

3. A BM-2-to-1 is basically a Max-1 unit.

3.3 Analysis

We can analyze the number of CAE stages and CAE blocks
for 2n-to-2m max-set-selection and sorting units using our
proposed approach. Fig. 14 shows the number of CAE
stages for bitonic and odd-even merge max-set-selection
and partial sorting units. In this figure, � indicates the
required number of CAE stages when outputs have
arbitrary order (max-set-selection units) and $ indicates
the number of stages when outputs are sorted (sorting
units). In all cases, bitonic and odd-even merge units have
the same number of CAE stages. The number of CAE stages
in max-set-selection units and partial sorting units is nðmþ
1Þ �mðmþ 3Þ=2 and ð2n�mÞðmþ 1Þ=2, respectively.
Thus, N-to-M max-set-selection and partial sorting units
have a time complexity of Oðlog2 N � log2 MÞ, where N ¼
2n and M ¼ 2m. For a 2m-output max-set-selection or partial
sorting unit, doubling the number of inputs increases the
number of CAE stages by mþ 1. For a 2n-input max-set-
selection unit and a 2n-input partial sorting unit, doubling
the number of outputs from 2m to 2mþ1 increases the
number of CAE stages by n�m� 2 and n�m� 1,
respectively. The difference in the number of CAE stages
between sorting units and max-set-selection units increases
logarithmically with the number of outputs.

Fig. 15 shows the required number of CAE blocks for
2n-to-2m bitonic partial sorting and max-set-selection units
as n and m are varied. The number of CAE blocks in
bitonic max-set-selection and partial sorting units is
ðmðmþ 3Þ þ 4Þ � 2n�2 � 2m � ðmþ 1Þ and ðmðmþ 3Þ þ
4Þ � 2n�2 � 2m�1 � ðmþ 2Þ, respectively. Keeping the num-
ber of outputs fixed, the number of CAE blocks increases
linearly with the number of inputs. Keeping the number
of inputs fixed, the number of CAE blocks increases
sublinearly with the number of outputs. The difference in

the number of CAE blocks between partial sorting units
and max-set-selection units increases logarithmically with
the number of outputs.

The number of CAE blocks in odd-even merge max-set-
selection and partial sorting units is ðmðmþ 3Þ þ 4Þ �
2n�2 �m� 2n�1 þ ð1� 2�mÞ � 2n � 2m � ðmþ 1Þ and

ðmðmþ 3Þ þ 4Þ � 2n�2 �m� 2n�1 þ ð1� 2�mÞ
� 2n � 2m�1 � ðmþ 2Þ;

respectively. Thus, N-to-M bitonic and odd-even merge
max-set-selection and partial sorting units have an area
complexity of OðN � log2

2ðMÞÞ. For all the units, the number
of CAE blocks increases linearly with the number of inputs.
When the number of outputs is one or two, bitonic and odd-
even merge max-set-selection and partial sorting units
require the same number of CAE blocks. However, as the
number of inputs increases, the benefit of using the odd-
even merge algorithm over the bitonic algorithm increases
in terms of the required number of CAE blocks for both
partial sorting and max-set-selection units.

4 IMPLEMENTATION AND RESULTS

To assist with analyzing implementations of our proposed
techniques, we developed Verilog register transfer level
(RTL) models for 2n-to-2m partial sorting and max-set-
selection units. The Verilog models are fully parameter-
ized to provide the flexibility needed to design and
analyze a wide range of sorting and max-set-selection
units. The designer can change (add or remove) each level
of pipeline registers to get a design with a different
latency, resource requirements, and frequency. This
feature helps achieve the desired throughout and latency.
The models are composed of small, verified building
blocks to simplify the design process and facilitate testing.

The proposed designs are synthesized using the Sy-
nopsys design compiler vB 2008.09 SP3 and a TSMC 65-nm
standard-cell library. The designs are pipelined and all
outputs are registered. For all the synthesis results, the
parameterizable data width (i.e, the CAE width), which can
be easily changed, is set to 10 unsigned bits, which is
commonly used in HEP applications. Tables 3 and 4 show
post-place-and-route results for 2n-to-4 and 2n-to-8 max-set-
selection units, respectively. We report implementation

1396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 14. The number of CAE stages for 2n-to-2m partial sorting ($) and
max-set-selection (�) units.

Fig. 15. The number of CAE blocks for 2n-to-2m bitonic partial sorting ($)
and max-set-selection (�) units.

Fig. 13. A 128-to-16 odd-even merge max-set-selection unit.

results for three different pipeline structures (depths) for
each bitonic and odd-even max-set-selection unit: One CAE
stage between pipeline registers, two CAE stages between
pipeline registers, and three CAE stages between pipeline
registers. The last column of Tables 3 and 4 lists the end-to-
end latency for each design. All max-set-selection units can
achieve high frequencies due to the regular pipelined
structure of the designs.

As shown in Tables 3 and 4, the clock frequency scales
fairly well for larger max-set-selection units. The reason is
that the frequency depends on the CAE width and the
number of CAE blocks between pipeline registers. Increas-
ing the number of inputs for a max-set-selection unit does
not directly affect the frequency, although it might
complicate the wire routing. By decreasing the pipeline
depth for a given max-set-selection unit, combinational area
increases due to trading increased area from buffers and
larger/faster gates for the higher clock frequency. As
expected, noncombinational area from registers decreases
for a given max-set-selection unit by decreasing the pipeline
depth. Comparing the two types of max-set-selection units
with each other, odd-even merge max-set-selection units
have higher clock frequencies and lower areas than bitonic
units for most designs and configurations.

Designs with one CAE stage between pipeline registers
have higher sorting throughput than similar designs with
two or three CAE stages between pipeline registers,
although they usually have higher latency and total area.
Designs with three CAE stages between pipeline registers
have the lowest latency and total area in most cases, while
they provide the lowest sorting throughput. Designs with
two CAE stages between pipeline registers attain a tradeoff
between latency and throughput. For instance, a pipeline
depth of seven at about 1.3 GHz provides the lowest latency
and lowest resource usage for the 256-to-4 max-set-selection
unit, while a pipeline depth of 19 at 2.7 GHz gives the
highest throughput.

Tables 3 and 4 show that, for a given number of outputs
and pipeline stages, resource requirements scale linearly,
latency scales logarithmically, and the frequency scales
fairly well with the number of inputs. These results conform
to the theoretical analysis of the proposed max-set-selection
units in Section 3.3. For a given number of outputs, as the
number of inputs increases, units with fewer pipeline stages
provide better end-to-end latency. Modular design and
intelligent pipelining enable efficient frequency/latency
tradeoffs even for large sorting units.

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1397

TABLE 3
Implementation Results of 2n-to-4 Max-Set-Selection Units

TABLE 4
Implementation Results of 2n-to-8 Max-Set-Selection Units

5 ITERATIVE MAX-SET-SELECTION UNITS

Parallel sorting and max-set-selection units that operate on
large blocks of data may receive considerable amounts of
input data. Implementing large max-set-selection and
partial sorting units in a fully parallel manner requires
high I/O bandwidth and area. In addition, for a fixed
number of outputs, the resource requirements of these units
increase linearly with the number of input values. Thus,
fully parallel sorting units may not be practical in large data
sorting applications.

In cases in which I/O bandwidth or area is limited and
latency requirements are not as stringent, a small max-set-
selection unit can be employed using an iterative process to
obtain the largest values from a given input data set. This
iterative approach is particularly well suited to systems in
which only a portion of the total data arrives to the max-set-
selection unit each cycle and the sorting throughput
requirements are not too high. Furthermore, such iterative
max-selection units can provide throughput, latency, and
resource requirement tradeoffs. Max-set-selection and
partial sorting units in applications such as HEP and video
processing often need to get data from different sources
over multiple cycles. Thus, our proposed iterative max-set-
selection units, which take as inputs new input data and the
largest results from previous iterations, are area-efficient
designs for these types of applications.

There has previously been successful research on
iterative sorting. Huang et al. [27] describe an iterative
sorting method that assumes all elements to be sorted are in
the device memory and sorts the elements in place. Their
memory-based approach does not work efficiently on
streaming data that arrive over multiple cycles. Zhang
and Zheng [28] implement another iterative sorting method
that uses systolic arrays to sort data in memory. Although
their approach scales well, it requires special memory
hardware. Olariu et al. [17] present a hardware algorithm
for sorting N values by repeatedly using a fixed-size
P -input sorting network that processes P values each cycle.
They show that their algorithm achieves optimal overall
performance of

�
N � log2 N

P � log2 P

� �

provided the P -input sorting network has a depth of
Oðlog2

2 P Þ such as bitonic sorting networks. In this paper, we
instead focus on iterative max-set-selection units. The main
differences between our work and previous research
include: 1) our designs are optimized for the case in which
only M outputs from N inputs are needed; 2) our designs
avoid using additional storage or intermediate memory
blocks by receiving the appropriate number of input values
each cycle; and 3) our designs iteratively utilize max-set-
selection units, rather than complete sorting units, which
leads to improved area and latency.

As shown in Fig. 16, our proposed iterative max-set-
selection units utilize R-to-M bitonic or odd-even merge
max-set-selection units of varying pipeline depths as
functional cores. Each design has a finite state machine
(FSM) that manages three sequential phases of the execu-
tion pipeline: Warm up, steady state, and completion. The
warm-up phase occurs when the first P input values arrive

and begin to propagate through the core max-set-selection
unit’s pipeline, but before any intermediate results are
generated. When the core max-set-selection unit outputs
data from the first set of input elements, the steady-state
phase begins. During each cycle of the steady-state phase, a
set of P new input values arrives at the inputs and a set of
M intermediate result elements are produced and then
immediately consumed by the core max-set-selection unit,
where R ¼ P þM. In this phase, the intermediate results
are fed back into the core max-set-selection unit with the
new input values to be sorted. Once all the inputs have been
received and applied to the core max-set-selection unit, the
completion phase begins, in which intermediate result
values are stored at the inputs of the sorting unit as the
core max-set-selection unit produces them. Once R values
are stored, they are sent to the core max-set-selection unit.
This process is completed with a final max-set-selection run
with R or fewer remaining valid values, resulting in the
final M outputs.

5.1 Discussion

As shown in Fig. 16, we use R ¼ P þM input registers to
buffer P input values and M intermediate result values.
Removing that level of registers decreases the total number

of cycles (latency) to generate the final result. However, it
also decreases the overall frequency of the design by adding
the delay from the feedback logic into the critical path of the
first stage of the core max-set-selection unit. Thus, our
designs use input registers to increase the frequency.

Including input registers, the latency of our iterative
max-set-selection designs in terms of clock cycles is

bounded by

Latency ¼ N=Pd e þ ðDþ 1Þ2 �M=ðP þMÞ
l m

þDþ 1;

ð1Þ

where P is the number of new input values received each
cycle by the core max-set-selection unit,N is the total number
of input values, D is the pipeline depth of the core max-set-
selection unit,M is the number of outputs from the core max-
set-selection unit, and 	d e denotes the ceiling operation. It is
important to note that N , P , and M define the problem. The

first term of the equation accounts for the cycles required to
receive all the inputs, both during the warm-up phase and
the steady-state phase. The remaining terms describe the
bound on how many cycles the completion phase takes.

1398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

Fig. 16. Iterative max-set-selection unit.

As an example, a design with a seven-stage, 16-to-4 max-
set-selection core unit is used to iteratively perform max-
set-selection on 256 inputs. The design parameters are
R ¼ 16, M ¼ 4, N ¼ 256, and D ¼ 7, which implies P ¼ 12,
because R ¼ P þM. The warm-up phase lasts seven cycles
in which 12 new inputs are applied each cycle. At the end of
the warm-up phase, the input registers and seven pipeline
stages each have a set of 12 values being sorted to find the
largest four. The steady-state phase begins when the first
input set’s four largest values are reapplied to the inputs of
the core unit along with another 12 completely new inputs.
This phase lasts 15 cycles until all 256 inputs are received.
The completion phase now forms new sets of 16 values by
concatenating (over four cycles) the first next four inter-
mediate output sets and reapplying them to the input of the
core unit. The second next four intermediate outputs sets,
which were originally in the input registers and first three
stages of the pipeline, also form another new set of 16
values in four cycles. After another eight cycles, two output
sets of the previous concatenations are reapplied to the core
unit. The four largest values from the entire 256 inputs are
ready after eight more cycles, for a total of 24 cycles in the
completion phase and 46 cycles for the entire process.

An iterative max-selection unit performs a significant
percentage of the work as it is receiving input values. More
overlapping of computation with data reception (during
the warm-up and steady-state phases) occurs by increasing
the total number of input values. Hence, for a large data
stream, such as N ¼ 8192, the latency is dominated by the
N=P term in (1).

5.1.1 Comparison with Parallel Max-Set-Selection Units

Equation (1) demonstrates that the latency of the iterative
max-set-selection units scales linearly with the total number
of inputs to sort (N), rather than Oðlog2

2 NÞ, as with parallel
max-set-selection units. However, in situations in which P
is significantly smaller than N (e.g., I/O bandwidth-limited
situations), a parallel max-set-selection unit, which operates
on all the input values at one time, must first buffer the
input values as they arrive, and then propagate the values
through the pipeline only once all input values are present.
Moreover, the number of logic inputs of a parallel max-set-
selection unit (R) should be as large as the number of data
values to sort (N). This imposes a huge impact on the area,
because parallel max-set-selection units have a hardware

complexity of OðN � ðlog2
2 MÞÞ. When the area of a parallel

max-set-selection unit can be tolerated, a parallel max-set-
selection unit achieves higher throughput and lower latency
than an iterative max-set-selection unit.

5.1.2 Iterative Partial Sorting Units

An iterative max-set-selection unit can easily be converted to
an iterative partial sorting unit by augmenting the iterative
unit with an M-input sorting unit to sort the final M values.
This modification increases the latency by Oðlog2

2 MÞ, if a
bitonic or odd-even merge sorting unit is used.

5.2 Results

To illustrate the potential tradeoffs that can be made with
iterative max-set-selection-units, 18 different iterative max-
set-selection units are designed to find the four largest
values from a stream of input values. Table 5 summarizes
the latency and resource requirements of each of the
iterative max-set-selection units when they are used to find
the four largest values from 256 10-bit input values. The
units are synthesized using the TSMC 65-nm standard cell
library. These designs use our proposed pipelined 8-to-4,
16-to-4, and 32-to-4 max-set-selection units, described in
Section 3, as functional cores for the iterative units. By a
simple modification to the FSM, our iterative technique can
be employed to find the M largest values from N input
values using an R-to-M max-set-selection unit as a
functional core for any integer values of N , R, and M for
which N > R > M � 1 and R ¼ P þM.

The area benefit of an iterative max-set-selection over a
parallel max-set-selection unit increases linearly with a
linear increase in the total number of inputs. For example,
in the case of a data stream of N ¼ 256 inputs and where
only P ¼ 12 new inputs can be received each cycle, an
iterative bitonic max-set-selection unit using a simple 16-to-
4 max selection unit with a pipeline depth of four has a
latency of 17.64 ns, whereas a parallel bitonic 256-to-4 max-
selection unit with a pipeline depth of seven has a latency of
5.39 ns (for the lowest latency 256-to-4 bitonic unit) as
indicated in Tables 3 and 5. However, the iterative max-set-
selection unit is more than 13 times smaller than the
corresponding parallel unit. Thus, at a small fraction of the
resource requirements, the iterative max-set-selection unit
could provide reasonable latency and throughput for
certain target applications.

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1399

TABLE 5
Performance and Resource Requirements of Iterative Max-Set-Selection Units Used to Find the Four Largest

Data Values from N ¼ 256 Data Inputs with 10-Bit Unsigned CAE Blocks Using a TSMC 65-nm Standard-Cell Library

6 RELATED RESEARCH

Sorting algorithms for shared-memory multiprocessor
systems and VLSI implementations have been investigated
during the past 40 years. Linear array structures and sorting
networks are two types of architectures that have been
widely used for hardware implementations. Linear sorters
that use insertion techniques have been proposed and
implemented as FPGA and VLSI designs [29], [30], [31],
[32], [33], [34]. Although they are simple to implement and
their area complexity is reasonable, linear array structures
are not able to process blocks of data in parallel, resulting in
low-throughput designs [33]. However, linear array struc-
tures are good candidates for sorting streaming or serial
data when only one new element is sent to or one sorted
element is retrieved from the sorting unit per clock cycle.
Linear sorters have a time complexity in the range OðbðNÞÞ
to OðNÞ, where b is the bit width of input values. Compared
to sorting networks, the higher time complexity of linear
sorters hinders their use in fast, high-throughput sorting
applications.

On the other hand, sorting networks, which use
multiple levels of parallel CAE blocks to rearrange data,
are suitable architectures for sorting huge amounts of
parallel data. Moreover, customizable pipelined sorting
networks can meet the requirements of high-throughput
applications. Hardware-implemented sorting networks
have a time complexity of Oðlog2

2 NÞ, which make them
high-speed architectures for large values of N . While
theoretical time-optimal Oðlog2 NÞ sorting networks have
also been proposed [35], [36], [37], they cannot be
implemented in hardware because of their large hidden
constants in O-notation [38].

6.1 Sorting Networks

From complex cube and mesh array structures to linear
array structures, and from theoretical log-depth algorithms
to practical linear and log2-depth algorithms, Batcher’s
compare-exchange sorting networks are of importance for
hardware implementations because of their ease of VLSI
realization. Since their advent, many sorting designs have
evolved from Batcher’s algorithms for shared-memory
systems and VLSI hardware [38], [39], [40]. Previous
research on sorting networks falls into two main categories:
Sorting algorithms and sorting architectures.

Extensive research has been performed to optimize
parallel sorting algorithms under various implementation
assumptions and for different applications. Herruzo et al. [41]

propose a novel odd-even merge sorting algorithm based on
a divide-and-conquer strategy for shared-memory multi-
processor systems. Ionescu and Schauser [42] propose a
parallel bitonic sorting algorithm for coarse-grain parallel
machines to optimize communication steps and local
computations. Agrawal [6] presents a scheme to design
arbitrary-sized bitonic sorting networks. He shows that his
method can efficiently be used in the design of asynchronous
transfer mode (ATM) switches. Kuo and Huang [21]
introduce a modified odd-even merge sorting network for
an arbitrary number of inputs. Their modular approach can
be used to implement custom sorting units in hardware.

Significant research has also investigated sorting archi-
tecture designs for VLSI and FPGA implementation.
Latency, throughput, scalability, and resource requirements
are the main factors considered for these hardware
implementations. Ratnayake and Amer [13] present an
FPGA-based implementation of a modified counting sort
algorithm that is used to sort large amounts of data. Layer
et al. [16] study the hardware implementation of an iterative
sorting unit that provides tradeoffs between data through-
put and area, and they present a pipelined architecture that
utilizes multilevel bitonic sorting networks on FPGAs. Lee
and Batcher [38] propose a novel recirculating bitonic
sorting network made up of a level of CAE blocks followed
by an �-network of log2 N � 1 switch levels. The purpose of
the recirculating network is to reduce the area complexity of
the original bitonic sorting networks to OðN � logNÞ.
Although the proposed network theoretically has the same
time complexity as the original bitonic sorting networks, the
latency of the switches may degrade the performance of the
sorter. The interested reader may refer to [39], [40] for a
more detailed survey of hardware sorting algorithms and
architectures.

6.2 Partial Sorting and Max-Set-Selection Units

In some cases, partial sorting units are needed to find the
M largest (or smallest) numbers from N numbers in sorted
order, where M < N . Max-set-selection is a related opera-
tion that outputs the M largest numbers but not necessarily
in sorted order. Partial sorting and selection algorithms
have previously been addressed by a wealth of software
approaches [43]. However, hardware designs for partial
sorters and selection algorithms have barely been discussed
in the literature.

Linear sorters, with slight modifications, are capable of
performing partial sorting [44]. Perez-Andrade et al. [45]

1400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

TABLE 6
Complexity of Sorting Algorithms (N: Total Number of Inputs, M: Number of Outputs, P : Number of New Elements per Cycle)

propose a linear FIFO-based sorter to partially sort an
arbitrary number of input values. Their algorithm discards
the smallest sorted element on receiving a new element and
finds a position for the new element. Colavita et al. [46]
propose a VLSI sorting architecture for streaming data.
Their regular design consists of several small elementary
sorting units, and its area and latency increase linearly with
the number of values to sort. Dong et al. [12] propose a
parallel partial sorting design using internal FPGA blocks to
improve the performance of normalized cross-correlation
image matching systems.

Each of these partial sorters are based on linear arrays,
resulting in a time complexity of OðNÞ. To find/sort the
M largest numbers from N numbers, our proposed partial
sorters, which are based on sorting networks, have a time
complexity of Oðlog2 N � log2 MÞ and area complexity of
OðN � log2

2 MÞ, compared with the Oðlog2
2 NÞ time com-

plexity and OðN � log2
2 NÞ area complexity of the original

bitonic and odd-even merge sorting networks. Our sorters
also have better latency, frequency, and throughput than
the partial sorters presented above, but our sorters have
higher resource requirements as summarized in Table 6.

7 CONCLUSIONS

The paper has presented the design and implementation of
flexible, low-latency, high-throughput N-to-M sorting, and
max-set-selection units and discussed the structure, perfor-
mance and resource requirements of these units. In this
paper, we propose modular techniques for designing N-to-
M sorting and max-set-selection units based on the
Batcher’s bitonic and odd-even merge sorting algorithms.
We present new regular bitonic merging units that are used
to construct efficient sorting and max-set-selection units.
Although built from Batcher’s merging units, our proposed
parallel designs modify the original units to obtain efficient
max-set-selection and partial sorting units, reducing
time and area complexities of the original algorithm to
Oðlog2 N � log2 MÞ and OðN � log2

2 MÞ, respectively. The
analysis performed shows that our designs have lower
latency and area than previous designs. For instance, a 256-
to-4 max-set-selection unit is more than two times faster and
five times smaller than the corresponding 256-input
complete sorting network.

We employ a modular design methodology that allows
our units to be readily utilized in applications with different
requirements. Our units meet stringent latency and
throughput constraints, are suitable for a wide range of
applications, and give designers the flexibility to easily
change the sorter architecture. Moreover, our designs can be
applied to two’s complement or floating-point numbers by
simply changing the comparators used in the CAE blocks.

Parallel max-set-selection units have high I/O band-
width and resource requirements. To reduce I/O band-
width and area, we propose an iterative max-set-selecting
method that receives P new input values per cycle. Our
iterative design reuses a small max-set-selection unit over a
number of iterations to generate the outputs. The proposed
iterative units, which have time and area complexities of
OðN=P Þ and OððP þMÞ � log2

2ðP þMÞÞ, have much lower
resource and I/O requirements than the corresponding

parallel units. The iterative max-set-selection units target

applications that require selection units with moderate

latency and throughput, but need low area and I/O.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation (NSF), under grant #0824040. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the NSF.

REFERENCES

[1] S. Azuma, T. Sakuma, T. Takeo, T. Ando, and K. Shirai, “Diaprism
Hardware Sorter - Sort a Million Records within a Second,” http://
sortbenchmark.org/Y2000_Datamation_DiaprismSorter.pdf, 2000.

[2] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTer-
aSort: High Performance Graphics Co-Processor Sorting for Large
Database Management,” Proc. Conf. Management of Data, pp. 325-
336, 2006.

[3] D. Koch and J. Torresen, “FPGASort: A High Performance Sorting
Architecture Exploiting Run-Time Reconfiguration on FPGAs for
Large Problem Sorting,” Proc. Symp. Field Programmable Gate
Arrays, pp. 45-54, 2011.

[4] D. Pok, C.-I. Chen, J. Schamus, C. Montgomery, and J. Tsui, “Chip
Design for Monobit Receiver,” IEEE Trans. Microwave Theory and
Techniques, vol. 45, no. 12, pp. 2283-2295, Dec. 1997.

[5] I. Pitas and A.N. Venetsanopoulos, Nonlinear Digital Filters:
Principles and Applications. Kluwer Academic Publishers, 1990.

[6] J.P. Agrawal, “Arbitrary Size Bitonic (ASB) Sorters and Their
Applications in Broadband ATM Switching,” Proc. IEEE Int’l Conf.
Computers and Comm., pp. 454-458, Mar. 1996.

[7] K. Yun, K. James, R. Fairlie-Cuninghame, S. Chakraborty, and
R. Cruz, “A Self-Timed Real-Time Sorting Network,” IEEE
Trans. Very Large Scale Integration Systems, vol. 8, no. 3, pp. 356-
363, June 2000.

[8] A. Colavita, E. Mumolo, and G. Capello, “A Novel Sorting
Algorithm and Its Application to a Gamma-Ray Telescope
Asynchronous Data Acquisition System,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectro-
meters, Detectors and Associated Equipment, vol. 394, no. 3, pp. 374-
380, 1997.

[9] D.C. Stephens, J.C. Bennett, and H. Zhang, “Implementing
Scheduling Algorithms in High-Speed Networks,” IEEE J. Selected
Areas in Comm, vol. 17, no. 6, pp. 1145-1158, June 1999.

[10] V. Brajovic and T. Kanade, “A VLSI Sorting Image Sensor: Global
Massively Parallel Intensity-to-Time Processing for Low-Latency,
Adaptive Vision,” IEEE Trans. Robotics and Automation, vol. 15,
no. 1, pp. 67-75, Feb. 1999.

[11] C. Chakrabarti and L.-Y. Wang, “Novel Sorting Network-Based
Architectures for Rank Order Filters,” IEEE Trans. Very Large Scale
Integration Systems, vol. 2, no. 4, pp. 502-507, Dec. 1994.

[12] S.-N. Dong, X.-T. Wang, and X.-B. Wang, “A Novel High-Speed
Parallel Scheme for Data Sorting Algorithm Based on FPGA,”
Proc. Int’l Cong. Image and Signal Processing, pp. 1-4, Oct. 2009.

[13] K. Ratnayake and A. Amer, “An FPGA Architecture of Stable-
Sorting on a Large Data Volume: Application to Video
Signals,” Proc. Ann. Conf. Information Sciences and Systems,
pp. 431-436, 2007.

[14] A. Gregerson, M. Schulte, and K. Compton, “High-Energy
Physics,” Handbook of Signal Processing Systems, pp. 179-211,
Springer, 2010.

[15] R. Marcelino, H.C. Neto, and J.M.P. Cardoso, “Sorting Units for
FPGA-Based Embedded Systems,” Proc. IFIP Cong. Distributed
Embedded Systems: Design, Middleware and Resources, pp. 11-22,
Sept. 2008.

[16] C. Layer, D. Schaupp, and H.-J. Pfleiderer, “Area and Throughput
Aware Comparator Networks Optimization for Parallel Data
Processing on FPGA,” Proc. Int’l Symp. Circuits and Systems,
pp. 405-408, May 2007.

[17] S. Olariu, M.C. Pinotti, and S.Q. Zheng, “An Optimal Hardware-
Algorithm for Sorting Using a Fixed-Size Parallel Sorting Device,”
IEEE Trans. Computers, vol. 49, no. 12, pp. 1310-1324, Dec. 2000.

FARMAHINI-FARAHANI ET AL.: MODULAR DESIGN OF HIGH-THROUGHPUT, LOW-LATENCY SORTING UNITS 1401

[18] V. Pedroni, R. Jasinski, and R. Pedroni, “Panning Sorter: A
Minimal-Size Architecture for Hardware Implementation of 2D
Data Sorting Coprocessors,” Proc. Asia Pacific Conf. Circuits and
Systems, pp. 923-926, 2010.

[19] A. Farmahini-Farahani, A. Gregerson, M. Schulte, and K. Compton,
“Modular High-Throughput and Low-Latency Sorting Units for
FPGAs in the Large Hadron Collider,” Proc. IEEE Int’l Symp.
Application Specific Processors, pp. 38-45, June 2011.

[20] G. Graefe, “Implementing Sorting in Database Systems,” ACM
Computing Survey vol. 38, article 10, Sept. 2006.

[21] C.J. Kuo and Z.W. Huang, “Modified Odd-Even Merge-Sort
Network for Arbitrary Number of Inputs,” Proc. IEEE Int’l Conf.
Multimedia and Expo, pp. 929-932, Aug. 2001.

[22] T. Nakatani, S.-T. Huang, B. Arden, and S. Tripathi, “K-Way
Bitonic Sort,” IEEE Trans. Computers, vol. 38, no. 2, pp. 283-288,
Feb. 1989.

[23] X. Hongwei and X. Yafeng, “An Improved Parallel Sorting
Algorithm for Odd Sequence,” Proc. Int’l Conf. Advanced Computer
Theory and Eng., pp. 356-360, Dec. 2008.

[24] K.J. Liszka and K.E. Batcher, “A Generalized Bitonic Sorting
Network,” Proc. Int’l Conf. Parallel Processing, pp. 105-108, Aug.
1993.

[25] K.E. Batcher, “Sorting Networks and Their Applications,” Proc.
AFIPS Proc. Spring Joint Computer Conf., pp. 307-314, 1968.

[26] C. Lefevre, “LHC: The Guide,” Jan. 2008.
[27] C.-Y. Huang, G.-J. Yu, and B.-D. Liu, “A Hardware Design

Approach for Merge-Sorting Network,” Proc. IEEE Int’l Symp.
Circuits and Systems, vol. 4, pp. 534-537, May 2001.

[28] Y. Zhang and S.Q. Zheng, “An Efficient Parallel VLSI Sorting
Architecture,” VLSI Design, vol. 11, no. 2, pp. 134-147, 2000.

[29] B. Ahn and J.M. Murray, “A Pipelined, Expandable VLSI Sorting
Engine Implemented in CMOS Technology,” Proc. IEEE Int’l
Symp. Circuits and Systems, pp. 134-137, May 1989.

[30] L. Yen-Chun, “On Balancing Sorting on a Linear Array,” IEEE
Trans. Parallel and Distributed Systems, vol. 4, no. 5, pp. 566-571,
May 1993.

[31] S.W. Moore and B.T. Graham, “Tagged Up/Down Sorter - A
Hardware Priority Queue,” The Computer J., vol. 38, pp. 695-703,
Sept. 1995.

[32] B. Parhami and D.-M. Kwai, “Data-Driven Control Scheme for
Linear Arrays: Application to a Stable Insertion Sorter,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 1, pp. 23-28,
Jan. 1999.

[33] J. Ortiz and D. Andrews, “A Configurable High-Throughput
Linear Sorter System,” Proc. Symp. Parallel Distributed Processing,
pp. 1-8, 2010.

[34] T. Demirci, I. Hatirnaz, and Y. Leblebici, “Full-Custom CMOS
Realization of a High-Performance Binary Sorting Engine with
Linear Area-Time Complexity,” Proc. Symp. Circuits and Systems,
vol. 5, pp. 453-456, 2003.

[35] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n Log n) Sorting
Network,” Proc. Ann. ACM Symp. Theory of Computing, pp. 1-9,
May 1983.

[36] T. Leighton, “Tight Bounds on the Complexity of Parallel
Sorting,” IEEE Trans. Computers, vol. C-34, no. 4, pp. 344-354,
Apr. 1985.

[37] M. Paterson, “Improved Sorting Networks with O(log N) Depth,”
Algorithmica, vol. 5, no. 1, pp. 65-92, 1990.

[38] J.-D. Lee and K.E. Batcher, “Minimizing Communication in the
Bitonic Sort,” IEEE Trans. Parallel and Distributed Systems, vol. 11,
no. 5, pp. 459-474, May 2000.

[39] D. Bitton, D.J. DeWitt, D.K. Hsaio, and J. Menon, “A Taxonomy of
Parallel Sorting,” ACM Computing Surveys, vol. 16, no. 3, pp. 287-
318, 1984.

[40] C.D. Thompson, “The VLSI Complexity of Sorting,” IEEE Trans.
Computers, vol. C-32, no. 12, pp. 1171-1184, Dec. 1983.

[41] E. Herruzo, G. Ruiz, J.I. Benavides, and O. Plata, “A New
Parallel Sorting Algorithm Based on Odd-Even Mergesort,”
Proc. Int’l Conf. Parallel, Distributed and Network-Based Processing,
pp. 18-22, 2007.

[42] M.F. Ionescu and K.E. Schauser, “Optimizing Parallel Bitonic
Sort,” technical report, Univ. of California at Santa Barbara, 1997.

[43] D.E. Knuth, Art of Computer Programming, Volume 3: Sorting and
Searching, second ed. Addison-Wesley, May 1998.

[44] L. Ribas, D. Castells, and J. Carrabina, “A Linear Sorter Core
Based on a Programmable Register File,” Proc. Conf. Design of
Circuits and Integrated Systems, pp. 635-640, 2004.

[45] R. Perez-Andrade, R. Cumplido, F. Del Campo, and C. Feregrino-
Uribe, “A Versatile Linear Insertion Sorter Based on a FIFO
Scheme,” Proc. IEEE CS Ann. Symp. Very Large Scale Integration
(VLSI), pp. 357-362, Apr. 2008.

[46] A. Colavita, A. Cicuttin, F. Fratnik, and G. Capello, “SORTCHIP:
A VLSI Implementation of a Hardware Algorithm for Continuous
Data Sorting,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1076-
1079, June 2003.

Amin Farmahini-Farahani received the BS
degree in computer engineering from Iran
University of Science and Technology and
the MS degree in electrical and computer
engineering from the University of Tehran, and
is working toward the PhD degree at the
Electrial and Computer Engineering Depart-
ment of the University of Wisconsin-Madison.
His research interests include computer archi-
tecture, embedded processing, and reconfigur-
able computing.

Henry J. Duwe III received the BS degree in
applied mathematics, engineering, and physics
from the University of Wisconsin-Madison, and
is currently a graduate student at the University
of Illinois at Urbana-Champaign. His research
interests include high-performance computer
architectures and runtime systems.

Michael J. Schulte received the BS degree in
electrical engineering from the University of
Wisconsin-Madison, and the MS and PhD
degrees in electrical engineering from the Uni-
versity of Texas at Austin. He is currently a
fellow design engineer with AMD Research and
an associate professor (on leave) in electrical
and computer engineering with the University of
Wisconsin-Madison. His research interests in-
clude domain-specific processors, heteroge-

neous computing, computer arithmetic, hardware acceleration, and
computer architecture. He received the US National Science Foundation
(NSF) CAREER Award, the Alfred Nobel Robinson Award, and the
Frank Hook Assistant Professorship. He has served an associate editor
for the IEEE Transactions on Computers and the Journal of VLSI Signal
Processing, and as a program chair and general chair for the IEEE
International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), the IEEE International Symposium on
Computer Arithmetic (ARITH), and the Asilomar Conference on Signals,
Systems and Computers. He is a senior member of the IEEE.

Katherine Compton received the BS, MS, and
the PhD degrees from Northwestern University,
in 1998, 2000, and 2003, respectively. She is
currently an associate professor at the Univer-
sity of Wisconsin-Madison in the Department of
Electrical and Computer Engineering. She and
her graduate students are investigating new
architectures, logic structures, integration tech-
niques, and systems software techniques for
reconfigurable computing. She serves on a

number of program committees for FPGA and reconfigurable comput-
ing conferences and symposia. She is a member of both the IEEE and
the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

