
Energy-Efficient Reconfigurable Cache Architectures for
Accelerator-Enabled Embedded Systems

Amin Farmahini-Farahani, Nam Sung Kim, Katherine Morrow

Department of Electrical and Computer Engineering, University of Wisconsin-Madison

{farmahinifar,nskim3,klmorrow}@wisc.edu

Abstract

High-performance embedded systems often include one or
more embedded processors tightly coupled with more special-
ized accelerators. These accelerators improve both perfor-
mance and energy efficiency because they are specialized for
specific (or specific classes of) computations. Data communi-
cation between the accelerator and memory, however, is a
potential bottleneck for both performance and energy-
efficiency. In this paper, we compare and evaluate, for the first
time, the impact of L1 data cache design on performance and
energy consumption of embedded processor-accelerator sys-
tems with shared memory. For this evaluation, we consider
data cache design parameters such as size, associativity, and
port count, as well as L1 cache sharing between the processor
and accelerator. We demonstrate the potential of configurable
caches to exploit diversity in cache requirements across hy-
brid software/hardware applications to significantly improve
energy-efficiency while maintaining high performance. Guid-
ed by these studies, we propose two techniques for improving
energy-efficiency of the cache hierarchy in processor-
accelerator systems. The first technique adds configurability
to the accelerator-cache interface to allow the accelerator to
either share the processor’s L1 data cache or use its own pri-
vate L1 cache. The second technique modifies the L1 cache
structure to provide a configurable tradeoff between band-
width (number of ports) and capacity. Our simulation results
show that the first and second techniques improve cache hier-
archy energy-efficiency by up to 64% and 33%, respectively,
over that of non-configurable caches.

1. Introduction

Energy efficiency concerns have driven a shift from tradi-
tional computer architecture designs to heterogeneous design
techniques, such as using specialized domain-specific or ap-
plication-specific accelerators. The performance and energy
efficiency benefits of specialized accelerators over general-
purpose processors allow a designer to considerably improve
system energy efficiency by trading the relatively cheap com-
modity of area for the expensive commodity of energy [1].

Reconfigurable accelerators are flexible structures that can
implement different accelerator circuits at different times, and
can be customized post-fabrication. However, the performance
and energy efficiency benefits of systems with reconfigurable
accelerators that use a shared-memory communication para-
digm greatly depend upon the architecture of the cache hierar-
chy [2]. We observe that conventional cache architectures for
processors do not necessarily provide an efficient solution for
reconfigurable accelerators because accelerators exhibit dif-
ferent memory behaviors than functionally-equivalent conven-
tional software-only execution.

First, memory access patterns differ between a processor
executing primarily or entirely sequential software code and a
reconfigurable accelerator that implements a highly-parallel
circuit. A circuit implemented in a reconfigurable accelerator
requires few (or no) loop counters and array indices to be

computed, stored, or fetched. Also, unlike processors, inter-
mediate values are located internally to the computational
structures; processors instead require memory load/store oper-
ations to access these values if they exceed the capacity of the
register file. Second, the memory access rate of a reconfigura-
ble accelerator for the input and output data streams is quite
different from that of a processor running a functionally-
equivalent software application. An accelerator performs po-
tentially many parallel computations, and thus generally re-
quires input and produces output at a higher rate than a pro-
cessor. Unlike processors, accelerators also often issue sepa-
rate bursts of read and write requests which favor high-
bandwidth data communication methods to accommodate
higher memory access rate [3], [4].

Prior studies have primarily examined the performance of
accelerator architectures or specific application implementa-
tions on reconfigurable computing platforms. However, few
efforts have examined the effects of cache design on energy
efficiency of systems composed of embedded processors and
reconfigurable accelerators implemented on a single chip us-
ing ASIC technology. In this paper, we revisit cache design
decisions made for general-purpose multi-core processors
based on the unique needs of a reconfigurable accelerator.
Based on our findings, we propose two novel design tech-
niques for L1 data (L1D) caches that improve performance
and energy efficiency of the cache hierarchy in our processor-
accelerator system.

In this paper, we first present our heterogeneous system ar-
chitecture that couples a processor with a reconfigurable ac-
celerator (Section 2) and continue with the following main
contributions:
 We explore the design space of L1D caches for processor-

accelerator systems to determine the capacity, number of
ports, associativity, and private vs. shared organization
that maximizes energy efficiency for different accelerated
streaming and multimedia applications (Section 3).

 We propose a configurable cache interface that allows the
accelerator to either share the processor’s L1D cache or to
use its own private L1D cache. Two different cache or-
ganizations thus exist in the cache hierarchy, and each ap-
plication can use the one that provides it with the best en-
ergy efficiency (Section 4.1).

 Motivated by the high cache bandwidth demands exhibit-
ed by the accelerator in our initial design space explora-
tion, we investigate the effectiveness of existing high-
bandwidth cache designs for L1D caches in embedded
systems (Section 4.2).

 We propose a new L1D cache design with a configurable
tradeoff between capacity and port count. This allows the
cache to be customized based on the requirements of the
currently-executing application (Section 4.3). We then
compare this proposed cache design to the existing ap-
proaches (discussed in Section 4.2), and demonstrate that
our approach and multi-bank caches improve performance
and energy efficiency of hybrid applications.

In addition to the contributions listed above, we present re-
lated work in Section 5, and conclude the paper in Section 6.

2. System Overview and Evaluation Methodology

Our system couples a high-performance embedded proces-
sor and a reconfigurable accelerator on a single chip through a
shared-memory cache hierarchy. The processor offloads com-
pute-intensive operations (application kernels) onto the accel-
erator to improve performance and energy efficiency. The
accelerator can be reconfigured at runtime to implement dif-
ferent kernels.

Previous studies have demonstrated that an accelerator per-
forms better with a direct access to the memory hierarchy than
an indirect access through a separate local buffer [2], [5], [6].
In this paper, we thus focus on two variations of a shared-
memory organization: one where the processor and accelerator
share an L1 data cache (Figure 1a), and one where each has its
own private L1 data cache (Figure 1b). Both architectures also
contain a shared L2 cache (and no further cache levels).

In our system, the accelerator directly issues its own
memory requests to the shared memory hierarchy. Like the
processor, it uses virtual addresses. We assume a virtually-
indexed physically-tagged L1 cache. For address translation,
the TLB is shared between the processor and the accelerator
[5], [6]. There is also a direct connection between the accel-
erator and processor that is used to communicate control in-
formation such as application kernel parameters through a fast,
but low-bandwidth connection [6].

The remainder of this section discusses the basic architec-
ture of our accelerator and execution model of our system.

2.1 Execution Model

Before invoking the accelerator to execute an application
kernel, the processor transfers computation parameters such as
operand starting addresses, configuration data, and other non-
streaming parameters to the accelerator. Next, the processor
invokes the accelerator using a custom instruction. The first
step that the accelerator performs is to generate the memory
addresses for the input and output data; once memory address-
es for an input stream are ready, the accelerator sends the read
requests to the cache hierarchy. The accelerator can send new
memory requests each cycle, unless the cache is blocked due
to pending requests. After the input data arrives, the accelera-
tor executes the kernel using its functional units. Once output
data is computed, the accelerator stores it to the memory hier-
archy at the appropriate output address computed during ad-
dress generation. After all results are stored, the execution
flow returns to the processor. These execution stages are pipe-
lined across loop iterations, allowing the accelerator to process
loop iteration i while transferring input data for iteration i+1
and generating addresses for iteration i+2.

2.2 Processor

This work targets a high-end embedded system, but does
not depend on a specific ISA or processor architecture. To
evaluate our work, we chose to model a single-core dual-issue
out-of-order processor (OoO) similar to an ARM Cortex-A9
embedded processor with a 9-stage execution pipeline. Table 1
shows the key architecture parameters of the processor and
caches.

2.3 Accelerator

The media and other streaming applications executed by
high-end embedded systems are compute-intensive with high
degrees of parallelism. Because this study concerns the cache
hierarchy and not the detailed low-level architecture of the
accelerator, we use an existing reconfigurable accelerator de-
sign rather than create a new one. We model a coarse-grained
accelerator similar to the DySER architecture [7] with a grid
of 8×8 32-bit heterogeneous functional units connected by a
configurable routing fabric (Figure 2). Most functional units in

this architecture can perform integer addition, subtraction, and
a few logical operations, while a few functional units can per-
form complex operations such as integer multiplication. The
accelerator is internally equipped with local storage for inter-
mediate data near the functional units that use them. This pre-
vents the accelerator from polluting the cache with data exhib-
iting low temporal locality that is only accessed once, and
helps decrease energy consumption, particularly in streaming
applications [8]. To estimate the execution speed of kernels
running on our accelerator, we create data flow graphs of the
kernels and map those graphs to the accelerator’s functional
units.

2.4 Simulation and Evaluation Methodology

To evaluate performance, we extended the gem5 simulator
[9] to support accelerator execution, multi-port caches, and
multi-bank caches. Our simulator models the functional and
timing execution of the processor, cache levels, reconfigurable
accelerator, and the interfaces between these structures. We
include the overhead of switching between the accelerator and
processor. We assume the system is implemented in 32 nm

 (a) (b)

Figure 1. (a) Processor and accelerator with a shared L1 data
cache, (b) Processor and accelerator with private L1 data caches.

Embedded

Processor

Reconfigurable

Accelerator

Shared L2 Cache

Main Memory

L1 Data Cache
L1 Inst.

Cache

Embedded

Processor

Reconfigurable

Accelerator

Shared L2 Cache

Main Memory

L1 Data

Cache

L1 Inst.

Cache

L1 Data

Cache

Figure 2. Coarse-grained reconfigurable accelerator with a grid
of 2×2 functional units [7].

FU

ALU

Register

S

S

S

S

FU

S

S

FU

SS

FU

S

FU: Functional Unit

S: Switches

Context Memory

C
a

c
h

e
 In

p
u

t In
te

rfa
c
e

C
a

c
h

e
 O

u
tp

u
t In

te
rfa

c
e

Table 1. Key architecture parameters

Fetch/Decode/

Dispatch/ Issue/
Retire width

2/2/2/3/2

L1 Inst. Size 16KB

L1 Inst. associa-

tivity
4-way

ROB entries 40 L1 access latency 3 cycles

IQ entries 12 L2 cache 512KB 8-way

LSQ entries 22 L2 access latency 12 cycles

Int ALUs 2 Main memory

access latency
100 ns

FP ALUs 1

Physical Registers 65 Cache line size 64B

Branch predictor Tournament
MSHRs

6 with 8 targets

per register BTB entries 512

ASIC technology with a supply voltage of 0.9V, and runs at
1GHz. The results presented in this paper are based on the
combined software and accelerated kernel execution, but do
not include initialization and non-memory I/O operations.

We use cacti 6.5 [10] to estimate cache dynamic and leak-
age energy consumption. Since we focus on the cache energy
efficiency, we only report and compare energy consumption of
the cache hierarchy. We use a snooping MOESI cache coher-
ence model when L1D caches are private and consider the
overhead to maintain coherence. To characterize the energy
efficiency of different caches, we adopt the energy-delay
product (EDP) [11] and energy-delay-squared product (ED

2
P)

as the evaluation metric. In these metrics, delay is the execu-
tion time of the application, and energy is the consumed ener-
gy in the cache hierarchy (including the L1I, L1D, and L2
caches).

2.5 Benchmarks

For our evaluation we use applications from the Media-
bench [12], Mediabench II [13], Parboil [14], and ERCBench
[15] benchmark suites. We choose four multimedia applica-
tions, one cryptographic application, and one scheduling ap-
plication that are representative of typical embedded systems
applications (Table 2). We profile the applications to find the
kernels (compute-intensive operations) of each application.
We then analyze each kernel to determine how much execu-
tion time is spent in it and whether or not the kernel can effi-
ciently be mapped to reconfigurable hardware. After mapping
the chosen kernels, the software code is then modified to re-
place kernel computation with appropriate instructions to
transfer parameters and control between the processor and the
accelerator. We compile all benchmarks using GCC 4.6.3 with
–O3 optimizations targeting the ARMv7-A architecture with
the Thumb instruction set and VFPv3 (floating-point) exten-
sions.

3. Motivation

The memory access patterns of processors differ from those
of accelerators. Processors are designed for a broad range of
applications, whereas accelerators, as specialized compute
units, are designed for highly-parallel compute-intensive ap-
plications. These applications usually have simple control
flow, and may represent a portion of a larger application. The
working sets and memory behaviors thus differ, placing dif-
ferent demands on the data cache(s). We therefore revisit L1D
cache design parameters such as capacity, associativity, and
port count as well as cache organization (private vs. shared
L1D) in the context of a system composed of a processor and

an accelerator. Our goal is to find energy-efficient cache de-
signs with reasonable performance for such a system.

We automatically explore the cache design space for dif-
ferent compute-intensive applications, such as those we expect
to execute in an embedded processor-accelerator system. We
examine three different architectures: (1) our processor-
accelerator architecture with a shared L1D cache (Figure 1a),
(2) our processor-accelerator architecture with private L1D
caches (Figure 1b), and (3) a processor-only architecture. In
all architectures, we explore a variety of cache design parame-
ters to evaluate their effect on performance and energy con-
sumption. These parameters include capacity (from 2KB to
64KB), number of read/write ports (from single- to triple-
port), and set-associativity (from 1-way to 4-way). Since
streaming applications rarely take advantage of the L2 cache,
we do not vary the processor’s L1 instruction cache and L2
cache; these structures retain the design parameters given in
Table 1. For this study we use the methodology described in
Section 2.4 and the architecture parameters in Table 1.

Table 3 summarizes the above design exploration. For each
application and architecture, Table 3 specifies the cache de-
sign parameters that result in the best (lowest) EDP while
maintaining a performance (execution time) within some
threshold (2%, 4%) of the baseline’s performance. For exam-
ple, the leftmost two result columns in Table 3a list design
parameters that provide the greatest EDP savings with at most
a 2% performance penalty. For comparison we also list the
parameters with the overall lowest EDP when this perfor-
mance requirement is removed. Table 3a shows the results for
processor-accelerator architectures with either a private or
shared L1D cache, compared to a baseline processor-
accelerator architecture with a shared 32KB, single-port 4-way
set-associative L1D cache. Table 3b shows results for a simi-
lar exploration of a processor-only system, compared to a
baseline processor-only system with a 32KB single-port 4-way
set associative L1D cache. The baseline cache design for both
tables is similar to L1D caches in several high-performance
embedded processors such as those in the ARM-A9-based

Table 3. L1D cache design parameters (size:ports:associativity) with the lowest EDP for each benchmark/architecture combination,
subject to the listed maximum slowdown relative to the baseline L1D cache (a 32KB, single-port 4-way set associative L1D). In each
table cell, the percentage is the EDP savings of a cache with the listed design parameters over that of the baseline cache.

(a) Processor-Accelerator Systems (b) Processor-only Systems

Bench-

mark

Max 2% Slowdown Max 4% Slowdown No Slowdown Threshold

Bench-

mark

Max 2%

Slowdown

Max 4%

Slowdown

No Slowdown

Threshold
Private

(Proc.), (Acc.)
Shared

Private

 (Proc.), (Acc.)
Shared

Private

(Proc.), (Acc.)
Shared

AESE
(2:1:1), (8:1:1)

30%

(8:1:1)

31%

(2:1:1), (8:1:1)

30%

(8:1:1)

31%

(2:1:1), (8:1:1)

30%

(8:1:1)

31%
AESE

(16:1:2)

31%

(16:1:2)

31%

(16:1:2)

31%

ADPCM
(2:1:1), (2:1:1)

44%

(2:1:1)

44%

(2:1:1), (2:1:1)

44%

(2:1:1)

44%

(2:1:1), (2:1:1)

44%

(2:1:1)

44%
ADPCM

(2:1:2)

17%

(2:1:2)

17%

(2:1:2)

17%

PNS
(2:1:1), (2:3:1)

63%

(2:3:1)

63%

(2:1:1), (2:3:1)

63%

(2:3:1)

63%

(2:1:1), (2:3:1)

63%

(2:3:1)

63%
PNS

(4:1:1)

26%

(4:1:1)

26%

(4:1:1)

26%

SAD
(4:1:1), (16:2:1)

50%

(16:2:1)

47%

(4:1:1), (16:2:1)

50%

(16:2:1)

47%

(4:1:1), (16:2:1)

50%

(16:2:1)

47%
SAD

(8:1:2)

21%

(8:1:2)

21%

(8:1:1)

32%

JPGD -
(16:2:2)

27%
-

(16:1:2)

30%

(2:1:1), (4:2:1)

18%

(8:2:1)

30%
JPGD

(16:1:2)

28%

(8:1:2)

29%

(8:1:1)

31%

MPG2D
(8:1:2), (4:2:1)

29%
(16:1:2)

24%
(8:1:1), (4:2:1)

30%
(8:2:1)
26%

(8:1:1), (4:1:1)
30%

(8:1:1)
29%

MPG2D
(16:1:2)

24%
(8:1:2)
25%

(8:1:1)
28%

Table 2. Benchmarks used in our evaluation

Name Description
of

Kernels

% Replaced

Exec. Time

JPGD JPEG decoder [13] 3 90.2%

MPG2D MPEG2 decoder [13] 9 78.7%

ADPCM
Adaptive differential pulse-code

modulation [12]
1 99.9%

PNS Petri net simulation [14] 2 95.7%

SAD Sum of absolute differences [14] 1 94.0%

AESE 128-bit AES encoder [15] 1 99.9%

processors in the Tegra 3 SoC [16] and Freescale’s e6500 pro-
cessors [17].

Each table cell contains the cache design parameters that
result in the best EDP that meets the required performance,
relative to the baseline. These parameters are listed as a tuple
(x:y:z), where x is the cache capacity, y is the number of
read/write ports, and z is the degree of set associativity. For
example, (16:3:2) stands for a 16KB, triple-port, and 2-way
set associative data cache. In the case of shared or processor-
only architectures, a single tuple describes the single L1D
cache. For the private cache architecture we list two tuples; the
processor’s L1D parameters followed by the accelerator’s
L1D parameters. In each table cell beneath the tuple(s) that
describe the best L1D cache design, we list the percent EDP
savings that design provides over the baseline L1D cache de-
sign.

The table demonstrates that different applications demand
different cache design parameters, and that these demands are
also affected by whether or not an accelerator is present, and if
so, how it interfaces with the cache hierarchy (i.e., private vs.
shared L1D cache). The results given in Table 3 lead to four
key observations about L1D cache designs aimed to minimize
EDP:
1. L1D Organization (Shared vs. Private): The energy and

performance effects of using different L1D cache organi-
zations are highly application-dependent. This is demon-
strated by the fact that JPGD achieves its lowest overall
EDP and execution time when the L1D cache is shared,
whereas MPG2D and SAD achieve their lowest overall
EDP and execution time when the L1D caches are private.

2. L1D Size: Hybrid applications (software+accelerated)
require a wide range of L1D cache sizes from 2KB to
16KB to minimize EDP. Some applications (ADPCM and
PNS) favor very small 2KB L1D caches while others
(SAD and MPG2D) favor larger caches. This motivates a
capacity-configurable cache design, where sections of the
cache could be disabled to save energy when the full ca-
pacity is unnecessary.

3. L1D SRAM Ports: The energy-efficiency of some hybrid
applications such as SAD, PNS, and JPGD, significantly
increases by using multiple-port caches. However, the ex-
ecution time of applications such as AESE and ADPCM
is independent of port counts. Port count configurability
could provide a greater bandwidth by enabling more ports
for applications such as SAD. Port count configurability
could save energy by allowing ports to be disabled when
they are not needed for applications such as AESE.

4. L1D Associativity: For most hybrid applications, direct-
mapped caches result in a better EDP. However, a few
applications favor 2-way set associative caches. For ap-
plications such as AESE, ADPCM, and PNS, set associa-
tive caches barely shorten the execution time, but signifi-
cantly increase energy. The performance provided by 4-
way set associative caches for applications such as
MPG2D, JPGD, and SAD does not compensate for the
increased energy consumption of the data cache, thereby
degrading energy efficiency.

Based on observation 1, neither a shared nor a private L1D
organization achieves the best energy efficiency across all
applications. In Section 4.1, we therefore propose a simple
architectural technique that provides a configurable L1D
cache organization, where the accelerator can use a private
L1D or one shared with the processor, based on the best
choice for the executing application.

Based on the observations 2-4, no single combination of
L1D design parameters provides the most energy-efficient
L1D cache for all applications. The size, associativity, or
number of ports of an L1D cache could be tuned based on the
executing application to improve the system’s energy efficien-
cy. Prior studies have proposed adding reconfigurability to

caches [18] to tune the number of cache sets (such as selec-
tive-sets [19]), number of cache ways (such as selective-ways
[20] and way-concatenation [21]), or both (such as hybrid
selective-sets-and-ways [22]) to exploit cache requirement
variability across applications to reduce cache energy dissipa-
tion with minimal impact on performance. However, no prior
study has proposed a method to vary the number of cache
ports. In this paper, we propose an architectural cache tech-
nique that we call configurable-port to tune the number of
cache ports across applications by trading cache capacity for
port count. Section 4.3 describes the proposed technique in
detail.

4. Configurable Cache Designs

We propose modifications to the L1D cache level in pro-
cessor-accelerator systems to maximize energy efficiency. We
first investigate L1D sharing in such a system, and propose a
configurable L1D cache organization that can act as a single
shared L1D cache or two private L1D caches, based on the
application to be executed. Second, we explore various exist-
ing design techniques to implement multi-port caches and
compare their advantages and drawbacks in the context of a
processor-accelerator system. Third, we propose a method to
provide a trade-off between L1D port count and capacity to
better support a variety of accelerated application kernels
where some demand higher cache bandwidth.

4.1 Configurable L1D Organization

When the L1D cache is shared (Figure 1a), data produced
by the processor can be directly consumed by the accelerator
(and vice-versa) without going through the cache hierarchy,
potentially saving energy and increasing performance. This
approach is not often used, however, in multi-processor sys-
tems, where threads/processes tend to compete for cache ac-
cess and capacity, and may not always share data between
them. Hence, simultaneous cache access by threads, and the
larger L1 capacity required to support multiple threads, in-
crease the cache access latency. A set of smaller, private cach-
es thus provide faster access to the most frequently accessed
data.

However, in a computing system with an accelerator, since
a portion of the application is executed by the processor and
the rest by the accelerator, the processor and accelerator col-
laborate on processing data and much data may be shared be-
tween them. Sharing an L1D cache thus could be more effec-
tive in an accelerated system than in a multiprocessor.

When the accelerator and the processor each have a private
L1D cache (Figure 1b), for each data movement between the
processor and accelerator, shared data is moved from the pro-
cessor’s L1 to the shared L2, then from the shared L2 to the
accelerator’s private L1 (or the reverse). The overhead of such
data movement can increase overall energy consumption.
However, even a system with a shared L1D cache can require
a similar number of data movements if the data produced or
consumed by the accelerator exceeds the capacity of the L1
cache. For example, many multimedia and embedded applica-
tions are streaming ones where a large amount of data are
fetched and processed. Running those application kernels on
accelerators with shared L1 caches can lead to eviction of
global and constant data that are used by the processor.

One major potential benefit of using private L1D caches in
a processor-accelerator system is that they provide a unique
opportunity to customize the accelerator’s L1D cache and the
processor’s L1D cache differently based on their expected
memory behaviors. This could lead to performance and energy
improvements over a system with a shared L1 cache if the
single shared L1 is not equally well-suited to both the acceler-
ator and processor.

We propose an L1D cache organization that can be config-
ured to act as either a single shared L1D cache or two private
L1D caches, allowing two different L1D cache topologies to
exist in the same architecture. This low-overhead organization
provides the opportunity to reconfigure the interface between
the accelerator and the L1D caches based on the executing
application.

Our proposed L1D cache with configurable sharing is
shown in Figure 3. The processor is always connected to its
own L1D cache. The accelerator, however, can be connected
either to the same L1D cache as the processor (one shared
L1D cache), or to its own L1D cache (private L1D caches). In
either cache organization (shared L1D or private L1D), the
processor’s memory requests are fulfilled by processor’s data
cache, but accelerator requests are directed either to the pro-
cessor’s L1D cache or the accelerator’s L1D cache, depending
on how the cache organization is currently configured. The
configuration data sets memory bits that control the added
routing logic labeled select and assign in Figure 3.

The cache organization can be reconfigured to be the or-
ganization that provides the application with the best energy-
efficiency (or performance, or whichever metric is desired)
prior to an application’s execution or upon a context switch,
exploiting diversity in cache organization demands across
applications. The system would use profiling information to
determine which organization should be used for a given ap-
plication; future work will investigate run-time reconfigura-
tion based on different phases of execution within an applica-
tion.

This configurable cache organization is also applicable to
multi-core systems where each core has its own dedicated
accelerator. In these systems, each processor-accelerator pair
has a configurable L1D cache organization that is private with
respect to the other processor-accelerator pairs. In this case,
the cache organization of each processor-accelerator pair can
be configured separately based on the application running on
that pair. Note that in this design, we do not merge the two
private caches to form a single, larger shared cache; rather, we
disable the accelerator’s private L1D cache when it is not in
use.

4.1.1 Overhead

As shown in Figure 3, the added select and assign logic is
very simple, and could be implemented using routing logic.
The added logic needs to route 32-bit data and address bits and
some control bits using only one extra level of multiplexers.
Therefore, this additional logic required to support reconfigu-
rability adds little area overhead to the L1D cache level de-
sign. The added delay is minor as well; the configuration bits
are loaded prior to application execution and are retained until
the application completes or a context switch. The path be-
tween the accelerator and its corresponding L1D is thus stati-

cally configured and not the result of a dynamic computation,
limiting the latency and power impact. Therefore, the resulting
structure can run at the speed of a conventional cache, yet
provide the ability to selectively choose the desired organiza-
tion when appropriate.

When the cache organization is reconfigured from shared
L1D to private L1D, the private L1D cache incurs the over-
head of cold misses, which are included in our evaluation.
When the cache organization is reconfigured from private
L1D to shared L1D, the accelerator’s L1D could be either
power-gated or kept in retention mode to save energy [23]. In
the former case where the L1D is power-gated, all dirty lines
should be written back to L2 cache before the L1D is turned
off. This may impose considerable performance and energy
overheads if switching between shared and private L1D hap-
pens frequently. If switching occurs only on a context switch,
then flushing dirty lines can be overlapped by context switch
time, minimizing the performance overhead.

In the latter case where the L1D goes to retention mode, the
L1D keeps its state, but only serves coherency requests from
the L2 cache. In this case, the L2 cache behaves as if the L1D
cache is active, initiating L1D coherence transactions when
needed. However, the accelerator’s memory requests are not
issued to this L1D. The L1D cache in the retention mode con-
sumes less energy in the active mode, even though energy
consumption is not trivial. Since configuration bits are only
loaded prior to application execution and cache organization
reconfiguration occurs at the granularity of an individual pro-
cess (i.e. on a context switch time), in our evaluation we as-
sume the accelerator’s L1D is power-gated and dirty lines are
flushed prior to application execution.

4.1.2 Evaluation

Our L1D cache design exploration in Section 3 indicates
that (a) when the L1D cache is shared, an L1D cache with
(16:2:2) design parameters, and (b) when L1D caches are pri-
vate, a processor’s L1D cache with (8:1:2) design parameters
and an accelerator’s L1D cache with (8:2:1) design parameters
provide reasonable performance while improving energy effi-
ciency across all hybrid applications we tested. Therefore, if
one has to choose non-configurable L1D caches, these cache
design parameters could be the chosen parameters for shared
and private cache organizations based on the applications we
tested.

Figure 4 compares the execution time, energy, EDP, and
ED

2
P of a shared organization with (16:2:2) L1D cache design

parameters over those of a private organization with (8:1:2),
(8:2:1) design parameters. Note that the total L1D size in both
organizations is the same. Figure 4 illustrates that the shared
L1D organization with (16:2:2) design parameters has better
or equal execution time for all benchmarks, while the private
L1D organization with (8:1:2), (8:2:1) design parameters has
better energy consumption for all benchmarks. With these

Figure 3. High-level structure of our proposed reconfigurable
L1D cache organization.

Embedded

Processor

Reconfigurable

Accelerator

Shared L2 Cache

Main Memory

L1 Data

Cache

L1 Inst.

Cache

L1 Data

Cache

selectassign

Figure 4. Comparison of a shared L1D organization with
(16:2:2) design parameters over a private L1D organization with
(8:1:2), (8:2:1) design parameters.

4
6
.3

5
%

9
9
.0

5
%

-30%

-20%

-10%

0%

10%

20%

30%

40%

AESE ADPCM PNS SAD JPGD MPG2D

Delay (Execution Time)

Energy

Energy-Delay Product

Energy-Delay-Squared Product

cache design parameters, one would choose the private L1D
organization when saving energy is critical (such as when the
battery of the embedded device is low), while the shared L1D
organization would be preferable when execution time and
quality of service is more important (such as when the device
is plugged in power source). In terms of EDP and ED

2
P, some

benchmarks have better energy efficiency on a shared L1D
and some on a private L1D. For example, the shared L1D im-
proves EDP of JPGD and SAD over the private L1D by 36%
and 5%, respectively, while the private L1D improves EDP of
PNS and MPGD over the shared L1D by 24% and 13%, re-
spectively.

When configurable caches are used, one could choose from
a wide range of possible cache configurations with different
execution time and energy. We automatically explore all po-
tential combinations of cache design parameters and organiza-
tion for all the benchmarks studied here. Note that best con-
figuration is not determined and employed during runtime, but
it is chosen based on application characteristics at compile
time. Figure 5 shows the L1D cache configurations that result
in the lowest energy, EDP, and ED

2
P and compares their re-

sults with a shared L1D cache with (16:2:2) design parame-
ters. Results show that the preferred L1D cache configuration
and organization are highly dependent on the executing appli-
cation and chosen optimization metric. A single cache config-
uration and organization provides the lowest energy, EDP, and
ED

2
P for AES and ADPCM, while other benchmarks require a

different cache configuration to achieve their lowest energy,
EDP, and ED

2
P. In general, SAD, JPGD, and MPG2D benefit

from larger caches with more ports, while AESE, ADPCM,
and PNS benefit from smaller single-port caches. In addition,
Figure 5 indicates that AESE, ADPCM, and JPGD favor the
shared cache organization, while SAD and MPG2D favor the
private cache organization. PNS favors the private organiza-
tion in terms of EDP, while it favors the shared organization in
terms of energy and ED

2
P. All benchmarks see some reduc-

tion in energy, EDP, and ED
2
P with this new configurable

L1D organization, however the reduction is highly application
dependent. The results show that our configurable L1D organ-
ization along with configurable caches can reduce energy,
EDP, and ED

2
P by up to 41%, 39%, and 44%, respectively

(69%, 64%, and 78% improvement) over a fixed L1D organi-
zation.

Overall, based on Figure 4 and Figure 5, each combination
of cache design parameters, organization, and application is
placed in a different spot in the design space of energy and
delay for processor-accelerator systems. Our configurable
L1D organization provides the opportunity to choose the
cache organization that best targets the desired optimization
metric for the running application.

4.2 Multi-Ported L1D Caches

In this section, we investigate existing design techniques to

implement high-bandwidth caches. Accelerators process data
at a higher rate and therefore issue more requests to memory
per time unit compared to processors. As a result, cache
bandwidth plays an important role in performance of acceler-
ated systems. There are several types of multi-port cache de-
signs that increase bandwidth [24]–[26]:
 True (ideal) multi-porting: all N cache ports operate inde-

pendently, and N addresses can be accessed each cycle. Be-
cause true multi-porting incurs high area/power/delay costs,
this approach is not feasible for large caches. Yet, if high
bandwidth is needed, the increase in dynamic and leakage
power may be offset by shorter execution time and reduced
overall energy.

 Time division multiplexing (virtual multi-porting or multi-
pumping): the cache runs N times faster than the processor,
providing the appearance of N ports. This technique does
not scale to large port counts because of clock speed limits.

 Cache replication: a single-port cache is replicated N times,
providing N read ports, but one write port is broadcast to the
replicated caches to maintain coherence. Thus, cache area
increases linearly with the number of read ports. Stores are
costly in terms of energy consumption due to the broadcast.

 Cache interleaving (multi-bank caches): the cache contents
are split across N independently-addressed banks, allowing
up to N simultaneous requests, provided each resides in a
separate bank. Requests to the same bank suffer from bank
conflicts. Increasing the number of banks improves cache
access parallelism and cache access time (smaller banks),
but increases area and wire delay of the arbitration and bank
interconnection circuitry. This increases cache area and de-
lay, limiting the feasible number of banks. In banked multi-
ported caches, data can be split across the banks in multiple
ways. Among them are line interleaving and word interleav-
ing. Line-interleaving partitions the address space across
multiple banks using a cache line granularity (Figure 6a). In
word-interleaved multi-bank caches, the words within a
cache line are distributed across multiple banks (Figure 6b).
Requests to sequential words in word-interleave banked
caches are served by different banks, reducing bank con-
flicts (and thus increasing performance) for sequential ac-
cesses as compared to line-interleave caches. However,
word-interleave caches require multi-port tags or replicated
tags to serve parallel requests to the same cache line [25].
The line tag must be replicated as many times as the number
of banks, or the tag array must have as many ports as the
number of banks. For example, in Figure 6b, tags for Banks
0 and 1 are duplicates. Note that there could be more than
two words per cache line depending on the number of words
per cache line and the number of banks.
Due to its high energy costs, virtual multi-porting is not

considered as feasible design techniques for embedded sys-
tems. However, we compare multi-bank and true multi-port
caches with our proposed technique in the next section.

(a) Configurable L1D caches with lowest

energy

Figure 5. Result summary of configurable L1D caches normalized to an L1D cache with (16:2:2) design parameters (Lower is better).

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

AESE
(8:1:1)

ADPCM
(2:1:1)

PNS
(2:1:1),
(2:3:1)

SAD
(4:1:1),
(16:2:1)

JPGD
(8:2:1)

MPG2D
(8:1:1),
(4:1:1)

Delay (Execution Time) Energy EDP ED2P

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

AESE
(8:1:1)

ADPCM
(2:1:1)

PNS
(2:1:1)

SAD
(2:1:1),
(16:1:1)

JPGD
(4:1:1)

MPG2D
(4:1:1),
(2:1:1)

Delay (Execution Time) Energy EDP ED2P

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

AESE
(8:1:1)

ADPCM
(2:1:1)

PNS
(2:3:1)

SAD
(4:1:1),
(16:3:1)

JPGD
(16:2:2)

MPG2D
(16:1:2),
(4:2:1)

Delay (Execution Time) Energy EDP ED2P

(b) Configurable L1D caches with lowest

energy-delay product (EDP)

(c) Configurable L1D caches with lowest

energy-delay-squared product (ED2P)

4.3 Configurable Ports

In Section 3, we demonstrated that multi-port caches im-
prove execution time and even energy efficiency for some
hybrid applications. However, multi-port caches barely im-
prove the execution time of other hybrid applications, degrad-
ing their energy efficiency due to the higher energy dissipation
of multi-port caches. To achieve better energy efficiency
across a wide range of hybrid applications, we propose a tech-
nique that we call configurable-port. This technique enables
us to increase the number of cache ports at the cost of smaller
cache capacity when executing applications that require higher
bandwidth. The configurable-port technique creates the illu-
sion of multi-port caches using a set of simple single-port
cache arrays. For applications that do not benefit from the
additional port(s), the configurable-port technique means that
the cache can be reconfigured as a conventional single-port
cache to reduce energy dissipation. This single-port cache can
be maintained as the same capacity as the multi-port configu-
ration, or it can use the full capacity provided by the single-
port cache arrays. Note that the configurable-port technique is
orthogonal to our proposed configurable L1D organization in
Section 4.1.

We exploit the idea of cache replication (discussed in Sec-
tion 4.2) to implement the configurable-port technique. Start-
ing from a single-port configuration, p identical cache arrays
are first configured to the appropriate size and associativity,
where p is the number of ports and cache having at least p
arrays. For example, to make a dual-port 8KB cache, two
cache arrays of 8KB each are required. Previous work on re-
configurable caches [22] discusses how to reconfigure cache
arrays to the appropriate size and associativity. Each port is
then connected to one of the cache arrays by configuring the
relevant steering logic, as shown in Figure 7. Data is replicat-
ed across the cache arrays as many times as the number of
ports. Hence, a read request is sent to a single cache array, but
write requests are broadcast to all arrays for coherency. Con-
sequently, the configurable-port technique increases the num-
ber of cache ports (bandwidth) by reducing the cache capacity.

Figure 7 depicts the high-level structure of a configurable-
port cache that can be configured as a single-, dual-, triple-, or
quad-port cache. In this figure, write requests can only be is-
sued by Port 0. The steering logic (shown as transmission
gates) are controlled by a simple function of address bits, con-
figuration bits, and read/write bits. Setting the configuration
bits therefore reconfigures the cache ports.

4.3.1 Overhead

To implement our proposed configurable-port technique,
we can reuse the datapath logic in a multi-banked cache archi-
tecture to route data from/to one of arrays. We add some extra
steering logic (indicated by the shaded blocks in Figure 7) to
support configurability. Minor modifications to the control
logic are also needed to generate control signals for the steer-
ing logic. Therefore, the implementation overhead to the L1D
cache level design is small. The added logic also does not in-
crease the critical path delay because the control signals for a
configuration are set before an application starts and do not
change during application execution. In our results, we thus
assume that a configurable-port cache has the same latency as
the baseline cache.

Similar to our technique of configurable L1D organization,
configurable-port cache designs enable us to configure the
L1D when an application begins, at a context switch, and
when an application completes. Any unused cache arrays can
be power-gated to save energy using the existing mechanism
typically available for SRAM [23]. Thus, dirty lines of power-
gated cache arrays should be written back to the L2. In addi-
tion, all blocks (clean or dirty) in cache arrays in which their
set-mappings change after enabling the cache arrays should be
flushed [22]. To reduce the overhead of writing back dirty
blocks, we only configure the cache when an application be-
gins.

Multi-port caches created by the configurable-port tech-
nique have lower performance compared to true multi-port
caches. To maintain coherence, configurable-port caches al-
low only a single write at any given cycle, sending the write
request to all cache arrays simultaneously (included in our
results). This degrades the performance of applications with
high store-to-load ratio, especially for accelerators with high
memory request rate.

 (a) (b)

Figure 6. Interleaving schemes in dual-bank caches: (a) line
interleaving, (b) word interleaving.

Bank 0

3 2 1 0

11 10 9 8

2
N
-5 2

N
-6 2

N
-7 2

N
-8

•

•

•

Bank 1

7 6 5 4

15 14 13 12

2
N
-1 2

N
-2 2

N
-3 2

N
-4

•

•

•

Tag 0

Tag 2

•

•

•

Tag

2
N-2

-2

Tag 1

Tag 3

Tag

2
N-2

-1

•

•

•

Bank 0

2 0

6 4

2
N
-6 2

N
-8

•

•

•

10 8

14 12

2
N
-2 2

N
-4

Bank 1

3 1

7 5

2
N
-5 2

N
-7

•

•

•

11 9

15 13

2
N
-1 2

N
-3

Tag 0

Tag 1

•

•

•

Tag 2

Tag 3

Tag

2
N-2

-2

Tag

2
N-2

-1

Tag 0

Tag 1

•

•

•

Tag 2

Tag 3

Tag

2
N-2

-2

Tag

2
N-2

-1

Figure 7. High-level structure of a configurable-port cache that can
be configured as a single-, dual-, triple-, or quad-port cache. The
added logics are indicated by shaded blocks.

Port 0 Port 3

Port 1

Array 2

Port 2

Array 1

Array 0 Array 3

Table 4. Energy consumption of different types of dual-port cach-
es implemented in 32 nm technology.

Size Cache type
Read access

energy (pJ)

Write access

energy (pJ)

Leakage

power (mW)

8KB

True 19.5 29.8 0.5256

Configurable 13.9 43.9 0.4932

Line-interleave 15.6 19.6 0.5301

Word-interleave 15.8 19.7 0.5350

16KB

True 22.7 31.4 0.6115

Configurable 16.5 46.3 0.6746

Line-interleave 17.0 25.1 0.6415

Word-interleave 17.2 25.3 0.6450

As shown in Table 4, energy dissipation of a configurable-
port cache with two ports is different from that of a true dual-
port cache. Since writes should be broadcast to multiple cache
arrays, writes to configurable dual-port caches consume more
energy than writes to true dual-port caches with the same size.
However, reads to configurable dual-port caches consume less
energy compared to corresponding true dual-port caches be-
cause of using simple single-port SRAM arrays rather than
dual-port SRAM arrays. Thus, configurable-port caches re-
duce read energy (and potentially leakage), but increase write
energy (included in our results).

4.3.2 Results

Evaluation setup. In this section, we study the effect of
high-bandwidth data caches and show that architectural tech-
niques such as configurable-port improve the energy efficien-
cy of judiciously-sized multi-port caches in accelerated sys-
tems with minimal impact on performance. We focus on per-
formance and energy consumptions in our analysis since these
are more of a concern than area in future embedded systems.

Based on our results in Section 3, we classify our bench-
marks as either cache-insensitive or cache-sensitive. Cache-
insensitive benchmarks such as AESE and ADPCM, show
little to no performance variation for the different cache pa-
rameters (port count, associativity, and size). AESE and
ADPCM have few memory accesses per time unit and their
rate of communication over computation is low. In fact, a
small 4KB single-port L1D degrades the performance of
AESE and ADPCM by only 2% over a 64KB triple-port L1D,
while it has clear energy advantages. In addition, AESE and
ADPCM performance is approximately the same for both pri-
vate and shared L1D topologies. Conversely, the performance
of cache-sensitive benchmarks such as SAD and PNS is sig-
nificantly affected by cache parameters. Therefore, we inves-
tigate the impact of our proposed configurable-port technique
on execution time and energy dissipation of cache-sensitive
benchmarks and compare it with true multi-port caches, line-
interleave multi-bank caches, and word-interleave multi-bank
caches.

To have a fair comparison, we use a 16KB two-way set as-

sociative cache in a shared L1D organization for all bench-
marks, which provides reasonable performance/energy for all
cache-sensitive benchmarks. Our results are easily applicable,
however, to other cache sizes and private L1D organization. In
this evaluation, we assume the word size is four bytes for
word-interleave banking.

Comparison of multi-port cache techniques. Figure 8
compares different types of multi-port caches (true multi-port,
configurable-port, line-interleave multi-bank, and word-
interleave multibank caches) in terms of execution time, ener-
gy dissipation, EDP, and ED

2
P. In general, this figure shows

that for our cache-sensitive benchmarks, multi-bank and con-
figurable multi-port caches improve execution time with little
increase in energy over single-port caches, but true multi-
porting incurs high energy consumption.

Compared to a true dual-port L1D, a dual-bank L1D results
in a slightly longer execution time, but significantly improves
EDP (the exception is the dual-bank line-interleave L1D for
PNS). For PNS and SAD, which have low store-to-load ratio,
execution time of a configurable multi-port L1D is compara-
ble to that of a true multi-port L1D, and better than that of a
multi-bank L1D. For these benchmarks, configurable multi-
porting improves EDP and ED

2
P considerably over true multi-

porting. Furthermore, PNS and SAD have better execution
time, EDP, and ED

2
P when the configurable-port L1D is con-

figured with three instead of two ports. For JPGD and
MPG2D, which have fair amount of stores, configurable mul-
ti-porting degrades execution time and EDP compared to true
multi-porting. In general, configurable multi-porting and mul-
ti-banking achieve better EDP. A dual-bank L1D provides the
most energy-efficient cache design for PNS, JPGD, and
MPG2D, while a configurable triple-port L1D provides the
most energy-efficient cache design for SAD. For example,
Figure 8 shows that a word-interleave dual-bank L1D reduces
execution time and EDP of PNS by 20% and 23%, respective-
ly, over a single-port cache. A line-interleave dual-bank L1D
reduces execution time and EDP of JPGD by 9% and 8%, re-
spectively, over a single-port cache. For SAD, configurable
triple-port L1D reduces execution time and EDP by 28% and
25% over a single-port cache (improvement by 38% and
33%).

Figure 8. Results summary of configurable-port, true multi-port, and multi-bank caches normalized to a single-port cache. Caches are
16KB, 2-way set associative. The notations ‘p’, ‘b’, ‘True’, ‘CP’, ‘LI’, and ‘WI’ stand for ports, banks, true multi-porting, configurable
multi-porting, line-interleave banking, and word-interleave banking, respectively. The x axis shows the port and bank design.

(a) Delay (execution time) (b) Energy

(d) Energy-delay-squared product (ED2P) (c) Energy-delay product (EDP)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1p 2p+True 2p+CP 2b+LI 2b+WI 3p+True 3p+CP 4b+LI 4b+WI

D
e

la
y

(E
x

e
c

u
ti

o
n

 T
im

e
)

PNS

SAD

JPGD

MPG2D

1
.9

8

1
.8

7

1
.9

6

1
.9

5

1
.6

1

1
.8

1

1
.8

3

1
.7

6

1
.7

6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1p 2p+True 2p+CP 2b+LI 2b+WI 3p+True 3p+CP 4b+LI 4b+WI

E
n

e
rg

y

PNS

SAD

JPGD

MPG2D

1
.8

0
1

.4
1

1
.5

0

1
.5

7

1
.6

2

1
.7

1

1
.6

8

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1p 2p+True 2p+CP 2b+LI 2b+WI 3p+True 3p+CP 4b+LI 4b+WI

E
n

e
rg

y-
D

e
la

y
P

ro
d

u
c

t

PNS

SAD

JPGD

MPG2D

1
.6

5

1
.4

4

1
.6

6

1
.6

0

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1p 2p+True 2p+CP 2b+LI 2b+WI 3p+True 3p+CP 4b+LI 4b+WI

E
n

e
rg

y-
D

e
la

y-
S

q
u

a
re

d

PNS

SAD

JPGD

MPG2D

Compared to an energy-hungry true triple-port L1D, a dual-
bank L1D and a configurable dual-port L1D have longer exe-
cution time, but much better area cost and energy efficiency.
Although a quad-bank L1D slightly improves performance
over a dual-bank L1D, it is extensively energy inefficient due
to extreme banking. On the other hand, while configurable
triple-port improves EDP over configurable dual-port for PNS
and SAD, it degrades EDP of JPGD and MPGD. The reason is
that the extra port increases cache energy dissipation while it
barely improves execution time of JPGD and MPGD, leading
to higher EDP. Configurable-port can take advantage of varia-
bility of required cache ports across applications to resemble
single-, dual-, or even triple-caches. True multi-port and multi-
bank caches, on the other hand, have fixed structure and can-
not be configured according to target applications.

Figure 8 also indicates that a word-interleave L1D per-
forms equal or better than a line-interleave L1D for our cache-
sensitive benchmarks. Note that even though word-interleave
caches have marginally higher access energy and leakage
power due to multi-port tags, their energy consumption is
comparable with line-interleave caches because of the slight
decrease in execution time.

Multi-port caches improve performance, but consume more
energy. Multi-bank caches slightly degrade performance, but
they have lower energy dissipation. Overall, we show that
although high-bandwidth data caches consume higher energy
compared to single-port caches, they can generally improve
energy efficiency of some accelerated applications by reduc-
ing execution time and lowering leakage energy. For these
applications, configurable-port caches can trade cache capaci-
ty for higher bandwidth. For other applications that do not
benefit from higher bandwidth, the configurable-port caches
can be configured as single-port caches to maintain lower ac-
cess energy.

Effect of cache size on configurable-port. Figure 9 shows
the performance of configurable dual-port caches with differ-
ent sizes. Figure 9 confirms that, as expected, the miss rate
and execution time decrease by increasing cache size. It also
indicates that most benchmarks suffer from a high L1D miss
rate. This is due to streaming nature of the benchmarks. This
directs that an L1D prefetcher could improve performance
(and potentially energy efficiency by lowering leakage ener-
gy). Figure 9d suggests that although EDP improves initially
by increasing cache size, it degrades with further size increas-
es. Thus, for each application, there is a specific break-even
point for EDP when the energy cost of larger caches exceeds
the energy benefit of shorter execution time. As shown in Fig-
ure 9d, For SAD and JPGD, a 16KB configurable dual-port
L1D cache provides the most energy-efficient cache hierarchy.
On the other hand, 2KB and 4KB configurable dual-port L1D
caches deliver the lowest EDP for PNS and MPG2D, respec-
tively. The best solution, therefore, is likely to be a 16KB con-
figurable dual-port L1D (made of two single-port arrays of

16KB each) where some of the capacity can be disabled when
not needed to reduce energy.

5. Related Work

In this section, we briefly discuss different major architec-
tural methods used to transfer data between a reconfigurable
accelerator and the memory hierarchy in a heterogeneous sys-
tem.

Local Buffer. In some cases, an accelerator is not integrat-
ed into the system’s memory hierarchy; instead, a local buffer
provides storage space for accelerator inputs and outputs,
which are filled/fetched by the processor. The accelerator has
no independent access to the processor data cache and main
memory. The processor loads a batch of data into the accelera-
tor’s local buffer for the accelerator to consume. Once the
accelerator finishes computation and writes its results back
into the buffer, the processor copies those results to the
memory hierarchy. The programmer must explicitly perform
these data transfers. Many reconfigurable systems use this
mechanism due to its architectural simplicity [27], [28].

Shared-Memory Cache Hierarchy. Instead of communi-
cating through a separate local buffer, an accelerator may in-
stead be integrated into a shared memory hierarchy. Direct
access to the cache hierarchy helps accelerators load their re-
quired data on demand without any help from the processors.
The accelerator and processor use virtual addressing to ensure
process isolation. Accelerated kernels share the virtual address
space with their parent process to facilitate data communica-
tion. The accelerator’s memory controller submits virtual
memory requests to the cache hierarchy (the processor does
not need to explicitly transfer this data). The accelerator’s
memory controller may use a separate TLB or one shared with
the processor.

In this type of architecture, there are several ways to organ-
ize the cache hierarchy. The accelerator and processor may
each have a private data cache. In this case the shared data is
loaded into the two separate caches, increasing data duplica-
tion. In the FARM prototype [29], an FPGA board with pri-
vate caches is coherently connected to two AMD boards
through HyperTransport links. In the Many-cache memory
architecture [30], an FPGA-based accelerator uses multiple,
multi-bank private caches in which each cache targets a spe-
cific type of data or region of memory.

Alternatively, one or more cache levels may be shared be-
tween the processor and accelerator. Sharing a data cache can
greatly reduce communication traffic. For instance, a shared
L2 cache was shown to be a higher performance and more
energy-efficient mechanism than a private L2 cache in appli-
cations where much of the processing is interleaved between
software and hardware [2], [31]. Sharing the L1 could, how-
ever, improve performance of both accelerated and software-
only execution if they share a working set that fits in the
shared L1 cache.

 (a) L1D cache miss rate (b) Delay (execution time) (c) Energy (d) Energy-delay product

Figure 9. Results summary of configurable dual-port L1D caches with different sizes relative to a 2KB cache (Lower is better).

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2KB 4KB 8KB 16KB

D
e

la
y
 (

E
x

e
c

u
ti

o
n

 T
im

e
)

PNS SAD JPGD MPG2D

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2KB 4KB 8KB 16KB

E
n

e
rg

y

PNS SAD JPGD MPG2D

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

2KB 4KB 8KB 16KB

E
n

e
g

y
-D

e
la

y
 P

ro
d

u
c

t

PNS SAD JPGD MPG2D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2KB 4KB 8KB 16KB

M
is

s
 R

a
te

PNS

SAD

JPGD

MPG2D

In the Garp architecture [32], [33], an accelerator and a
single processor share the same memory system. While the
accelerator is active, it takes control of memory buses to load
or store data from/to memory. In the Tartan architecture [34],
although a single processor and accelerator are connected via a
bus to transfer data between the accelerator and processor's
register file, L1 data cache is shared between the two. Choi et
al. [35] investigates performance and area of multi-port caches
in a system where a soft processor shares an L1 cache with
several accelerators. The processor, caches, and accelerators
are implemented on an FPGA. In this paper, we however in-
vestigate performance and energy efficiency of the cache hier-
archy in a processor-accelerator system where the whole sys-
tem including the processor, caches, and coarse-grained accel-
erator is implemented using ASIC technology, thus having
different requirements and characteristics.

6. Conclusions

Accelerated embedded systems are designed to run a spe-
cific class of well-defined applications. We study a wide range
of cache designs in these systems and find that configurable
cache architectures can significantly improve energy-
efficiency by varying cache requirements across applications.
Therefore, we propose a configurable cache organization that
allows shared and private L1 data caches to exist in the same
architecture. Furthermore, we propose a novel cache design
that provides a configurable tradeoff between cache capacity
and cache bandwidth. In the future, we plan to apply our ap-
proaches to multi-core systems where each core has a dedicat-
ed accelerator as well as systems where multiple cores share
an accelerator.

Acknowledgments

This work was supported in part by generous gift grants
from AMD and NSF grants (CNS-0952425, CCF-0953603,
and CCF-1016262). Nam Sung Kim has financial interest in
AMD.

References

[1] M. Taylor, “Is dark silicon useful?,” in Design Automation Conference,
2012, pp. 1131–1136.

[2] P. Garcia and K. Compton, “Shared memory cache organizations for
reconfigurable computing systems,” in Field Programmable Custom

Computing Machines, 2009, pp. 239–242.

[3] M. Lyons et al., “The accelerator store: A shared memory framework for
accelerator-based systems,” ACM Trans. Archit. Code Optim., vol. 8, no.

4, pp. 48:1–48:22, 2012.

[4] R. Hou et al., “Efficient data streaming with on-chip accelerators:
Opportunities and challenges,” in High Performance Computer

Architecture, 2011, pp. 312–320.

[5] M. Vuletic et al., “Seamless hardware-software integration in
reconfigurable computing systems,” IEEE Design and Test of

Computers, vol. 22, no. 2, pp. 102–113, 2005.

[6] P. Garcia and K. Compton, “A reconfigurable hardware interface for a
modern computing system,” in Field-Programmable Custom Computing

Machines, 2007, pp. 73–84.

[7] V. Govindaraju et al., “Dynamically specialized datapaths for energy

efficient computing,” in High Performance Computer Architecture,

2011, pp. 503–514.

[8] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” in Intl. Symp. on Computer Architecture, 2010, pp. 37–

47.

[9] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[10] N. Muralimanohar et al., “CACTI 6.0: A tool to model large caches,”

2009.

[11] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose

microprocessors,” IEEE J. of Solid-State Circuits, vol. 31, no. 9, pp.
1277–1284, 1996.

[12] C. Lee et al., “MediaBench: A tool for evaluating and synthesizing

multimedia and communicatons systems,” in Microarchitecture, 1997,
pp. 330–335.

[13] J. E. Fritts et al., “MediaBench II video: Expediting the next generation

of video systems research,” Microprocess. Microsyst., vol. 33, no. 4, pp.
301–318, 2009.

[14] J. Stratton et al., “Parboil: A revised benchmark suite for scientific and

commercial throughput computing,” 2012.
[15] D. Chang et al., “ERCBench: An open-source benchmark suite for

embedded and reconfigurable computing,” in Field Programmable

Logic and Applications, 2010, pp. 408–413.
[16] A. L. Shimpi, “NVIDIA’s Tegra 3 launched: Architecture revealed,”

2011. [Online]. Available:

http://www.anandtech.com/show/5072/nvidias-tegra-3-launched-
architecture-revealed.

[17] D. Burgess et al., “e6500: Freescale’s low-power, high-performance

multithreaded embedded processor,” IEEE Micro, vol. 32, no. 5, pp. 26–
36, 2012.

[18] P. Ranganathan et al., “Reconfigurable caches and their application to

media processing,” in Intl. Symp. on Computer Architecture, 2000, pp.
214–224.

[19] S. Yang et al., “An integrated circuit/architecture approach to reducing

leakage in deep-submicron high-performance I-caches,” in High-
Performance Computer Architecture, 2001, pp. 147–157.

[20] D. H. Albonesi, “Selective cache ways: On-demand cache resource
allocation,” Microarchitecture, pp. 248–259, 1999.

[21] C. Zhang et al., “A highly configurable cache architecture for embedded

systems,” in Intl. Symp. on Computer Architecture, 2003, pp. 136–146.
[22] S.-H. Yang et al., “Exploiting choice in resizable cache design to

optimize deep-submicron processor energy-delay,” in High-

Performance Computer Architecture, 2002, pp. 151–161.
[23] M. Khellah et al., “A 4.2GHz 0.3mm2 256kb dual-V/sub cc/ SRAM

building block in 65nm CMOS,” in IEEE Intl. Solid State Circuits

Conference, 2006, pp. 2572–2581.
[24] K. Wilson and K. Olukotun, “Designing high bandwidth on-chip

caches,” in Intl. Symp. on Computer Architecture, 1997, pp. 121–132.

[25] J. Rivers et al., “On high-bandwidth data cache design for multi-issue
processors,” in Microarchitecture, 1997, pp. 46–56.

[26] T. Austin and G. Sohi, “High-bandwidth address translation for

multiple-issue processors,” SIGARCH Comput. Archit. News, vol. 24,
no. 2, pp. 158–167, 1996.

[27] J. Kelm and S. Lumetta, “HybridOS: Runtime support for reconfigurable

accelerators,” in Field Programmable Gate Arrays, 2008, pp. 212–221.
[28] E. Caspi et al., “Stream computations organized for reconfigurable

execution (SCORE): Introduction and tutorial,” in Field-Programmable

Logic and Applications, 2000, pp. 605–614.
[29] T. Oguntebi et al., “FARM: A prototyping environment for tightly-

coupled, heterogeneous architectures,” in Field-Programmable Custom

Computing Machines, 2010, pp. 221–228.
[30] A. Putnam et al., “Performance and power of cache-based

reconfigurable computing,” in Intl. Symp. on Computer Architecture,

2009, pp. 395–405.
[31] P. Garcia and K. Compton, “A scalable memory interface for multicore

reconfigurable computing systems,” in Field-Programmable

Technology, 2011, pp. 1–8.
[32] T. Callahan et al., “The Garp architecture and C compiler,” Computer,

vol. 33, no. 4, pp. 62–69, 2000.

[33] J. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a
reconfigurable coprocessor,” in Field-Programmable Custom

Computing Machines, 1997, pp. 12–21.

[34] M. Mishra et al., “Tartan: evaluating spatial computation for whole
program execution,” in Architectural Support for Programming

Languages and Operating Systems, 2006, pp. 163–174.

[35] J. Choi et al., “Impact of cache architecture and interface on
performance and area of FPGA-based processor/parallel-accelerator

systems,” in Field-Programmable Custom Computing Machines, 2012,

pp. 17–24.

