
1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2333735, IEEE Computer Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS, MANUSCRIPT ID

DRAMA: An Architecture for Accelerated
Processing near Memory

Amin Farmahini-Farahani†, Jung Ho Ahn‡, Katherine Morrow†, and Nam Sung Kim†
†University of Wisconsin-Madison, ‡Seoul National University

Abstract—Improving energy efficiency is crucial for both mobile and high-performance computing systems while a large fraction

of total energy is consumed to transfer data between storage and processing units. Thus, reducing data transfers across the

memory hierarchy of a processor (i.e., off-chip memory, on-chip caches, and register file) can greatly improve the energy

efficiency. To this end, we propose an architecture, DRAMA, that 3D-stacks coarse-grain reconfigurable accelerators (CGRAs)

atop off-chip DRAM devices. DRAMA does not require changes to the DRAM device architecture, apart from through-silicon

vias (TSVs) that connect the DRAM device’s internal I/O bus to the CGRA layer. We demonstrate that DRAMA can reduce the

energy consumption to transfer data across the memory hierarchy by 66-95% while achieving speedups of up to 18× over a

commodity processor.

——————————  ——————————

1 INTRODUCTION

A major source of energy inefficiency in current computing

systems originates from the fact that the processor usually

must transfer data from off-chip DRAM devices to its on-

chip cache hierarchy and then into its register file before pro-

cessing it. Our experiment shows that evaluated (data-

intensive) applications consume up to 66% of their combined

memory I/O and processor energy just for moving data from

off-chip memory to the last level cache and through the

cache hierarchy, buses, and register file in 40nm technology

generation. Furthermore, the fraction of data movement en-

ergy in total system energy is projected to increase even fur-

ther with technology scaling [3].

In order to minimize such energy inefficiency, this paper

makes the following contributions:

 We propose a new DRAM-Accelerator (DRAMA) architec-

ture where the processor can offload compute- and/or da-

ta-intensive operations to CGRAs 3D-stacked atop DRAM

devices (Section 2). This can reduce data transfers across

the conventional processor memory hierarchy (i.e., from

the off-chip DRAM to on-chip caches and register file) and

thus energy consumption. Moreover, CGRAs exploit spa-

tial parallelism in applications to significantly improve

performance. Apart from added TSVs on a DRAM device

that connects its internal I/O bus to the CGRA layer,

DRAMA does not change the processor, the processor-

memory interface, and the underlying DRAM architecture.

This is particularly attractive to DRAM manufacturers ex-

ploring features that can boost their product values.

 We provide a detailed methodology on how to partition

application data and place them on DRAM devices such

that we can maximize the benefit of DRAMA architecture

executing accelerated applications while maintaining the

compatibility with the existing dual-inline memory mod-

ule (DIMM) architecture and its interface (Section 3).

Our experiments for two classes of applications ported to

DRAMA show that the energy consumption to transfer data

across the memory hierarchy is reduced by 66-95% while

achieving speedups of up to 18× over a commodity proces-

sor. The energy reduction in transferring data translates into

a 40-66% reduction in the total processor and memory I/O

energy consumption which is achieved by stacking CGRAs

atop DRAM devices.

Previous studies have examined integrating logic with

memory (e.g., [9]), but differences in logic and memory tech-

nologies caused these processor-in-memory (PIM) systems to

suffer from high manufacturing costs and low yield [10].

Alternatively, 3D stacking technology can provide a high-

bandwidth connection between DRAM and processor dies

using TSV-based wide I/O buses. Although there have been

proposals on stacking accelerator layers and DRAM layers

[13], thermal effects limit the number of 3D-stacked DRAM

and logic layers (reducing capacity) [7]. In contrast, DRAMA

instead stacks a single layer of a small, low-power CGRA

atop each single-layer DRAM device in a DIMM. Thus,

DRAMA has a limited negative impact on thermal reliability.

2 HARDWARE ARCHITECTURE

The DRAMA architecture stacks a CGRA on top of each

DRAM device, connected to the internal DRAM I/O lines

using TSVs. A conceptual view of the architecture is shown

in Figure 2a. Each CGRA is connected only to its associated

DRAM device and operates on the data contained in that

device independently of (and in parallel with) the CGRAs on

the other DRAM devices. DRAMA is designed to conform

with the conventional DIMM interface; it does not require

any change to the DIMM interface or the processor while

involving minimal changes to the underlying DRAM design.

As a result, DRAMA can be easily used in conjunction with

existing processors and their platforms to accelerate DRA-

MA-enhanced applications. Furthermore, this design still

allows existing un-accelerated applications to run on DRA-

MA-equipped platforms without performance penalty.

The processor communicates with CGRAs through a

memory-mapped I/O interface that operates similarly to

mode registers in conventional DRAM systems, and that

does not require any changes to the processor-DIMM inter-

face. The processor sends kernel configuration data, address

generation parameters for the data to be processed, and other

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2333735, IEEE Computer Architecture Letters

 IEEE COMPUTER ARCHITECTURE LETTERS, MANUSCRIPT ID

kernel parameters before triggering kernel execution using

this interface. The processor polls a memory-mapped status

register to check for kernel completion.

2.1 CGRA – DRAM Device Interface

Figure 2b shows the architecture of a modern DRAM device

with an ×16 interface (16-bit data I/O per DRAM device) [8].

The device has eight banks divided into two groups (left,

right) of four banks. Each bank group shares a 128-bit inter-

bank global I/O (GIO) bus comprised of upper and lower 64-

bit GIO buses. For each read operation, multiplexers select

128-bit data from the left or right 128-bit GIO buses; this data

is then serialized before being sent through the 16-bit data

I/O pins (Figure 2c).

The CGRA layer simply reads or writes data through the

TSVs connected to the existing GIO buses (Figure 2c) without

changing the underlying architecture of the DRAM device.

DRAM devices with ×8 and ×16 interfaces use 64 and 128

TSVs to transfer between the DRAM and CGRA, respective-

ly. This TSV-based stacking approach is similar to one devel-

oped for stacking a wide-I/O DRAM device atop a processor

die [4]. In DRAMA, the same steering logic that directs data

to/from the left or right set of banks also directs data

through the TSVs to the CGRA layer. Additional TSVs trans-

fer command and address bits from the CGRA layer to the

DRAM device to indicate the type of operation and the ad-

dress involved (which in turn determines the bank, row, and

column within the DRAM device). Therefore, data is trans-

ferred between the CGRA and DRAM device using normal

DRAM operations. Each CGRA connects to the DRAM de-

vice through a small amount of input/output buffering and

logic that then connect to the TSVs (Figure 1).

Current 3D interconnect technology allows a TSV pitch

size of 50µm for 3D DRAM stacking [4], thus 128 TSVs have

an area of only ~0.32 mm2. Since the typical area of DDR3

and DDR4 devices ranges from 30 mm2 to 80 mm2 [6], the

area overhead of the additional TSVs is negligible. This TSV-

based stacking provides the same peak bandwidth per de-

vice as the off-chip data I/O bus connection.

2.2. CGRA Architecture

CGRAs exploit spatial parallelism to accelerate a wide range

of applications. Each CGRA is a heterogeneous grid of 32-bit

coarse-grained functional units (FUs) and small distributed

storage (for intermediate results) connected by a configura-

ble routing switches. Based on synthesis results of FUs and

switches, we estimate that the area of a CGRA with 64 FUs is

~0.832 mm2 in 40 nm technology targeted at 800 MHz.

Each CGRA also includes a simple memory controller

(MC) to issue memory requests to its DRAM device. This

CGRA-side MC does not require complex scheduling

queues. Generally, accelerated kernels include little or no

data-dependent control flow and avoid “pointer chasing”, so

the memory request order can usually be optimized during

kernel development. When CGRAs are launched, the control

of DRAMs is passed to CGRA-side MCs and the processor-

side MC stops sending commands like ACT and CAS. The

processor and CGRAs do not operate on the same data set

simultaneously. When CGRAs are working, the processor

busy-waits until CGRA computations are completed to avoid

frequent concurrent accesses. Thus, no changes to memory

consistency are needed. If the processor-side MC requires

sending memory commands, it first needs to halt CGRA-side

MCs (by writing to a mode register). CGRA-side MCs then

close pages before the processor-side MC takes control back.

Next, the processor-side MC activates the required page and

accesses data. The same mechanism is used for refreshing.

CGRAs in DRAMA use physical memory addressing, and

usually operate on big data structures (like large images and

matrices). Big-memory workloads rarely benefit from virtual

memory features such as page swapping [1]. We adopt

memory segmentations without paging for region of

memory accessed by CGRAs. This approach maps contigu-

ous region of virtual memory to contiguous region of physi-

cal memory. This eliminates virtual memory overheads due

to TLB misses for the large data structures accessed by

CGRAs in DRAMA.

3 SOFTWARE MODIFICATIONS

The conventional DIMM architecture interleaves each 64-bit

data block amongst DRAM devices, each of which stores 4, 8,

and 16 bits for ×4, ×8, and ×16 DRAM devices, respectively.

However, DRAMA requires that all data used by each CGRA

be located within the DRAM device to which that CGRA is

attached. Maintaining compatibility with the existing DIMM

Figure 1. DRAMA CGRA stacked on top of DRAM Device.

Read

FIFO

and

Input

Logic

CGRA

TSVs

Write

FIFO

and

Output

Logic

DRAM Device Layer

CGRA Layer

Figure 2. Organization of the DRAMA architecture (a), internal architecture of a DDR3 device with ×16 interface and 8 banks (b), TSV con-
nection to upper 64 global I/O lines (c).

 (a) (b) (c)

DLL and Control Logic

Upper 64-bit GIO Upper 64-bit GIO

Column Logic I/O Pins and TSVs Row Logic Bank

Lower 64-bit GIO Lower 64-bit GIO

Read FIFO

and Mux

Mux DeMux

Write FIFO

and DeMux

Write

Drivers

Read

Drivers
I/O

Pads

Dout Serializer Din Deserializer8

88

64-bit GIO
64-bit GIO

8
8

64 TSVs

64 64

DRAM DIMM

CGRA

Layer

Off-chip I/O Bus

to/from Processor

DRAM Device DRAM Device

CGRA

Layer

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2333735, IEEE Computer Architecture Letters

A. FARMAHINI-FARAHANI ET AL.: DRAMA: AN ARCHITECTURE FOR ACCELERATED PROCESSING NEAR MEMORY

architecture and interface requires rearranging data both to

partition it across CGRAs for parallel processing and to en-

sure that all sub-words of a given data word are written to

the same DRAM device.

Figure 3 (top-left) shows an example of a 4×4 array of 32-

bit words (A–R), where the four quadrants of the array

should be distributed among the four ×16 DRAM devices in

a DIMM as indicated. Each 32-bit data word consists of 16-bit

upper and lower subwords, labeled “1” and “0”, respective-

ly. Figure 3 (top-right) shows how this array would typically

be distributed across ×16 DRAM devices, separating the up-

per and lower halves of each 32-bit word, and failing to

group the data for each quadrant into a single device. Figure

3 (bottom) shows a “shuffled” arrangement of the same data

that partitions data appropriately for DRAMA processing

when it is written to the DRAM using the conventional inter-

face. The shuffling can be performed by the use of modified

data structures, or by explicitly writing shuffled data during

data structure initialization at the beginning of a program. To

avoid inconsistencies between the processor’s cache and

main memory, CGRAs’ shuffled input data is stored to

memory using non-temporal instructions, which bypass the

cache hierarchy (and avoid the need to flush the cache). After

DRAMA execution, the processor “unshuffles” data pro-

duced by the CGRAs before using it.

4 EVALUATION

We evaluate the efficacy of DRAMA executing embedded

applications (SIFT, Tracking (TRCK), and Disparity map

(DISP) from the San Diego Vision suite [12]), as well as scien-

tific applications (LBM and MRI-Gridding (MRIG) from the

Parboil suite [11]). The most compute- and data-intensive

portions of each application are converted to dataflow

graphs representing CGRA kernels (the remaining parts are

executed by the processor). The energy consumption of each

kernel is based on the number and type of computations in

its graph. Kernel latencies are based on the depth and type of

computations in the dataflow graph after it is mapped to the

CGRA functional units. For all presented comparisons,

DRAMA CGRAs have 64 FUs and operate at 800 MHz.

Baseline architectures without CGRAs are summarized in

Table 1. For scientific application comparisons, the baseline is

a high-performance four-way processor with DDR3-1600

DRAMs; for embedded application comparisons, the base-

line is an embedded two-way processor with LPDDR2-1066

DRAMs. In each comparison, DRAMA uses the same proces-

sor and memory parameters as the corresponding baseline.

For DRAMA and baseline architectures, we use DDR3-1600

devices with ×8 and ×16 interfaces and LPDDR2-1066 devic-

es with an ×16 interface. To form a 64-bit bus between pro-

cessor and memory, there exist eight and four DRAM devic-

es for ×8 and ×16 interfaces, respectively.

We extend gem5 [2] and use McPAT [5] to evaluate the

performance and power consumption of the DRAMA archi-

tecture, respectively. To estimate area and power of CGRAs

and kernels executing on them, we synthesize CGRA’s FUs

and switches using Synopsys Design Compiler.

4.1 Performance

Figure 4 demonstrates the significant performance improve-

ments of DRAMA for both scientific and embedded applica-

tions over the corresponding baseline architectures. This is

the case even when comparing to a baseline with a doubled

clock frequency (“Baseline 2x Freq”). For scientific applica-

tions, eight CGRAs each using a 64-TSV connection provide

better speedup than four CGRAs each using a 128-TSV. In

this case, the increased compute ability of additional CGRAs

outweighs the increased bandwidth. In embedded applica-

tions, DISP achieves a speedup of over 18× due to regular

memory access pattern and simple data flow graphs with

high spatial parallelism. Overall, DRAMA’s high speedups

originate from parallel execution of CGRAs, spatial parallel-

ism exploited by CGRAs, and direct data communication

between CGRAs and DRAM devices (i.e., lower data com-

munication latency for applications with low-temporal lo-

TABLE 1. KEY ARCHITECTURE PARAMETERS

Baseline Architecture

Feature
Scientific

Comparisons
Embedded

Comparisons

Processor Frequency 2 GHz 1 GHz

Superscalar 4-way 2-way

ROB/IQ/LSQ Entries 128/36/80 40/12/22

Integer / FP ALUs 3 / 1 2 / 1

L1I/L1D/L2 Size (KB) 32/32/512 32/32/512

Memory
DDR3-1600

(×8 and ×16)
LPDDR2-S4-1066

(×16)

DRAM Design

Feature ×8 Interface ×16 Interface

Devices (# CGRAs) 8 4

DRAMA TSVs Per Device 64 128

Figure 3. Data arrangement across devices for a 4×4 array of 32-
bit words (A – R). Original data arrangement (top) and shuffled
arrangement for DRAMA acceleration (bottom).

A

1

C

1

E

1

G

1

J

1

L

1

N

1

Q

1

A

0

C

0

E

0

G

0

J

0

L

0

N

0

Q

0

B

1

D

1

F

1

H

1

K

1

M

1

P

1

R

1

B

0

D

0

F

0

H

0

K

0

M

0

P

0

R

0

Shuffled array

A

1

C

1

E

1

G

1

J

1

L

1

N

1

Q

1

A

0

C

0

E

0

G

0

J

0

L

0

N

0

Q

0

B

1

D

1

F

1

H

1

K

1

M

1

P

1

R

1

B

0

D

0

F

0

H

0

K

0

M

0

P

0

R

0

Device 3

A

1

E

1

A

0

E

0

B

1

F

1

B

0

F

0

J

1

N

1

J

0

N

0

K

1

P

1

K

0

P

0

L

1

Q

1

L

0

Q

0

M

1

R

1

M

0

R

0

Device 1 Device 0

C

1

G

1

C

0

G

0

D

1

H

1

D

0

H

0

Device 2

Distribution of shuffled array

across four ×16 DRAM devices

Distribution of original array

across four ×16 DRAM devices

Device 3

A

1

J

1

C

1

L

1

E

1

N

1

G

1

Q

1

B

1

K

1

D

1

M

1

F

1

P

1

H

1

R

1

B

0

K

0

D

0

M

0

F

0

P

0

H

0

R

0

Device 1 Device 0

A

0

J

0

C

0

L

0

E

0

N

0

G

0

Q

0

Device 2

D
e

v
ic

e
 3

D
e

v
ic

e
 2

D
e

v
ic

e
 1

D
e

v
ic

e
 0

Original array showing

desired partitioning

Data for each partition is spread across multiple devices

Data for each partition is collected within a single device

Figure 4. Speedup of DRAMA compared to the baseline architecture.

0

1

2

3

4

5

6

7

8

9

LBM MRIG

S
p

e
e

d
u

p

Scientific Performance

Baseline 2x Freq DRAMA ×16 DRAMA ×8

0

2

4

6

8

10

12

14

16

18

20

DISP SIFT TRCK

S
p

e
e

d
u

p

Embedded Performance

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2333735, IEEE Computer Architecture Letters

 IEEE COMPUTER ARCHITECTURE LETTERS, MANUSCRIPT ID

cality due to not moving data across the cache hierarchy).

4.2 Energy Consumption

To evaluate energy consumption of DRAMA, we consider

dynamic and leakage energy of the processor, cache hierar-

chy, and CGRAs. When CGRAs are working, the processor

polls CGRA status registers at 1/10th of the processor’s base-

line frequency. Figure 5 shows the energy consumed for

transferring data across the register file, cache hierarchy, and

memory I/O in DRAMA normalized to that in the baseline

architecture; DRAMA significantly reduces energy con-

sumed for transferring data by 66-95%. In brief, DRAMA can

greatly reduce data movement energy because of (1) pro-

cessing most of data near memory devices and therefore

eliminating data movement in the cache hierarchy and regis-

ter file, and (2) using TSVs that consume 11.2× less I/O ener-

gy than off-chip interconnects in LPDDR2 [4].

Figure 6 shows the energy breakdown of DRAMA (com-

bined processor, CGRAs, memory I/O), normalized to ener-

gy consumption of the baseline architecture. Processor ener-

gy is broken down into three parts of (1) instruction fetch

and control, (2) execution units, and (3) on-chip data move-

ment across the cache hierarchy, buses, and register file.

DRAMA reduces total energy consumption over that of the

baseline architecture by 68-95%. 34-60% of this energy reduc-

tion is achieved by using CGRAs and 40-66% of this reduc-

tion is achieved by stacking CGRAs atop DRAM devices. The

DRAMA architecture with eight DRAM devices (hence eight

CGRAs) provides more energy savings than the DRAMA

architecture with four DRAM devices. Although eight

CGRAs have higher combined CGRA leakage energy than

four CGRAs, the leakage energy decreases due to shortened

execution time. DISP executed by four CGRAs obtains the

highest total energy reduction of 95%. The main reason for

this significant energy reduction is that data movement en-

ergy in DISP is reduced by 95% which constitutes 66% of its

total processor and memory I/O energy consumption.

Overall, DRAMA can substantially reduce energy con-

sumption. Due to absence of the instruction fetch and control

overhead, CGRAs process data much more energy-efficiently

than processors. Moreover, unnecessary data movement is

eliminated by stacking CGRAs atop DRAM devices. Finally,

CGRAs speed up execution, reducing system leakage energy.

5 CONCLUSION

In this paper, we proposed a new architecture, DRAMA, to

enable accelerated data processing near memory. DRAMA

exploits local data processing to reduce data movement en-

ergy. DRAMA can be implemented using the current 3D

stacking technology without changing the underlying

DRAM architecture. We showed that DRAMA can consider-

ably reduce energy consumption (68-95%) and improve per-

formance by up to 18.4×.

ACKNOWLEDGMENTS

This work was supported in part by generous grants from

NSF (CCF-0953603, CNS-1217102, and CNS-0952425), and

DARPA (HR0011-12-2-0019). Nam Sung Kim has a financial

interest in AMD and Samsung Electronics.

REFERENCES

[1] A. Basu et al., “Efficient virtual memory for big memory
servers,” in International Symposium on Computer Architecture,
2013, vol. 41, no. 3, pp. 237–248.

[2] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput.
Arch. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[3] S. W. Keckler et al., “GPUs and the Future of Parallel
Computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, Sep. 2011.

[4] J.-S. Kim et al., “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O
DRAM With 4x128 I/Os Using TSV Based Stacking,” IEEE J.
Solid-State Circuits, vol. 47, no. 1, pp. 107–116, Jan. 2012.

[5] S. Li et al., “The McPAT Framework for Multicore and
Manycore Architectures,” ACM Trans. Archit. Code Optim., vol.
10, no. 1, pp. 1–29, Apr. 2013.

[6] K.-N. Lim et al., “A 1.2V 23nm 6F2 4Gb DDR3 SDRAM with
local-bitline sense amplifier, hybrid LIO sense amplifier and
dummy-less array architecture,” in IEEE Intl. Solid-State Circuits
Conference, 2012, pp. 42–44.

[7] G. H. Loh et al., “Efficiently enabling conventional block sizes
for very large die-stacked DRAM caches,” in Intl. Symp. on
Microarchitecture, 2011, pp. 454–464.

[8] C. Park et al., “A 512-Mb DDR3 SDRAM Prototype With CIO
Minimization and Self-Calibration Techniques,” IEEE J. Solid-
State Circuits, vol. 41, no. 4, pp. 831–838, Apr. 2006.

[9] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro,
vol. 17, no. 2, pp. 34–44, 1997.

[10] D. Patterson et al., “Intelligent RAM (IRAM): the industrial
setting, applications, and architectures,” in Intl. Conf. on
Computer Design, 1997, pp. 2–7.

[11] J. Stratton et al., “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” 2012.

[12] S. K. Venkata et al., “SD-VBS: The San Diego Vision Benchmark
Suite,” in International Symposium on Workload Characterization,
2009, pp. 55–64.

[13] Q. Zhu et al., “A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in IEEE Intl. 3D
Systems Integration Conf., 2013, pp. 1–7.

Figure 5. Data movement energy in DRAMA normalized to that in
the baseline architecture.

0
.7

7

1
.1

0

0

0.2

0.4

0.6

0.8

1

1.2
B

a
s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

D
R

A
M

A
 ×

8

B
a

s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

D
R

A
M

A
 ×

8

B
a

s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

B
a

s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

B
a

s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

LBM MRIG DISP SIFT TRCK

Scientific Embedded

N
o

rm
a
li
z
e
d

 D
a
ta

 M
o

v
e
m

e
n

t
E

n
e
rg

y

On-chip Data
Movement

Off-chip
Memory I/O
and TSV

Figure 6. DRAMA (combined processor, CGRAs, and memory I/O)
energy normalized to the baseline architecture energy.

0

0.2

0.4

0.6

0.8

1

1.2

B
a

s
e

li
n

e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

D
R

A
M

A
 ×

8

B
a

s
e

li
n

e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

D
R

A
M

A
 ×

8

B
a

s
e

li
n

e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

B
a

s
e
li

n
e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

B
a

s
e

li
n

e

B
a

s
e
li

n
e

 2
x

 F
re

q

D
R

A
M

A
 ×

1
6

LBM MRIG DISP SIFT TRCK

Scientific Embedded

N
o

rm
a

li
z
e

d
 T

o
ta

l
E

n
e

rg
y CGRAs

Execution
Units

Instruction
Fetch and
Control

On-chip Data
Movement

Off-chip
Memory I/O
and TSV

