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Abstract—Improving energy efficiency is crucial for both mobile and high-performance computing systems while a large fraction 

of total energy is consumed to transfer data between storage and processing units. Thus, reducing data transfers across the 

memory hierarchy of a processor (i.e., off-chip memory, on-chip caches, and register file) can greatly improve the energy 

efficiency. To this end, we propose an architecture, DRAMA, that 3D-stacks coarse-grain reconfigurable accelerators (CGRAs) 

atop off-chip DRAM devices. DRAMA does not require changes to the DRAM device architecture, apart from through-silicon 

vias (TSVs) that connect the DRAM device’s internal I/O bus to the CGRA layer. We demonstrate that DRAMA can reduce the 

energy consumption to transfer data across the memory hierarchy by 66-95% while achieving speedups of up to 18× over a 

commodity processor.   

——————————      —————————— 

1 INTRODUCTION

A major source of energy inefficiency in current computing 

systems originates from the fact that the processor usually 

must transfer data from off-chip DRAM devices to its on-

chip cache hierarchy and then into its register file before pro-

cessing it. Our experiment shows that evaluated (data-

intensive) applications consume up to 66% of their combined 

memory I/O and processor energy just for moving data from 

off-chip memory to the last level cache and through the 

cache hierarchy, buses, and register file in 40nm technology 

generation. Furthermore, the fraction of data movement en-

ergy in total system energy is projected to increase even fur-

ther with technology scaling [3]. 

In order to minimize such energy inefficiency, this paper 

makes the following contributions: 

 We propose a new DRAM-Accelerator (DRAMA) architec-

ture where the processor can offload compute- and/or da-

ta-intensive operations to CGRAs 3D-stacked atop DRAM 

devices (Section 2). This can reduce data transfers across 

the conventional processor memory hierarchy (i.e., from 

the off-chip DRAM to on-chip caches and register file) and 

thus energy consumption. Moreover, CGRAs exploit spa-

tial parallelism in applications to significantly improve 

performance. Apart from added TSVs on a DRAM device 

that connects its internal I/O bus to the CGRA layer, 

DRAMA does not change the processor, the processor-

memory interface, and the underlying DRAM architecture. 

This is particularly attractive to DRAM manufacturers ex-

ploring features that can boost their product values. 

 We provide a detailed methodology on how to partition 

application data and place them on DRAM devices such 

that we can maximize the benefit of DRAMA architecture 

executing accelerated applications while maintaining the 

compatibility with the existing dual-inline memory mod-

ule (DIMM) architecture and its interface (Section 3).   

Our experiments for two classes of applications ported to 

DRAMA show that the energy consumption to transfer data 

across the memory hierarchy is reduced by 66-95% while 

achieving speedups of up to 18× over a commodity proces-

sor. The energy reduction in transferring data translates into 

a 40-66% reduction in the total processor and memory I/O 

energy consumption which is achieved by stacking CGRAs 

atop DRAM devices.  

Previous studies have examined integrating logic with 

memory (e.g., [9]), but differences in logic and memory tech-

nologies caused these processor-in-memory (PIM) systems to 

suffer from high manufacturing costs and low yield [10]. 

Alternatively, 3D stacking technology can provide a high-

bandwidth connection between DRAM and processor dies 

using TSV-based wide I/O buses. Although there have been 

proposals on stacking accelerator layers and DRAM layers 

[13], thermal effects limit the number of 3D-stacked DRAM 

and logic layers (reducing capacity) [7]. In contrast, DRAMA 

instead stacks a single layer of a small, low-power CGRA 

atop each single-layer DRAM device in a DIMM. Thus, 

DRAMA has a limited negative impact on thermal reliability. 

2 HARDWARE ARCHITECTURE 

The DRAMA architecture stacks a CGRA on top of each 

DRAM device, connected to the internal DRAM I/O lines 

using TSVs. A conceptual view of the architecture is shown 

in Figure 2a. Each CGRA is connected only to its associated 

DRAM device and operates on the data contained in that 

device independently of (and in parallel with) the CGRAs on 

the other DRAM devices. DRAMA is designed to conform 

with the conventional DIMM interface; it does not require 

any change to the DIMM interface or the processor while 

involving minimal changes to the underlying DRAM design. 

As a result, DRAMA can be easily used in conjunction with 

existing processors and their platforms to accelerate DRA-

MA-enhanced applications. Furthermore, this design still 

allows existing un-accelerated applications to run on DRA-

MA-equipped platforms without performance penalty. 

The processor communicates with CGRAs through a 

memory-mapped I/O interface that operates similarly to 

mode registers in conventional DRAM systems, and that 

does not require any changes to the processor-DIMM inter-

face. The processor sends kernel configuration data, address 

generation parameters for the data to be processed, and other 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 



1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2333735, IEEE Computer Architecture Letters

 IEEE COMPUTER ARCHITECTURE LETTERS,  MANUSCRIPT ID 

 

kernel parameters before triggering kernel execution using 

this interface. The processor polls a memory-mapped status 

register to check for kernel completion.  

2.1 CGRA – DRAM Device Interface 

Figure 2b shows the architecture of a modern DRAM device 

with an ×16 interface (16-bit data I/O per DRAM device) [8]. 

The device has eight banks divided into two groups (left, 

right) of four banks. Each bank group shares a 128-bit inter-

bank global I/O (GIO) bus comprised of upper and lower 64-

bit GIO buses. For each read operation, multiplexers select 

128-bit data from the left or right 128-bit GIO buses; this data 

is then serialized before being sent through the 16-bit data 

I/O pins (Figure 2c).  

The CGRA layer simply reads or writes data through the 

TSVs connected to the existing GIO buses (Figure 2c) without 

changing the underlying architecture of the DRAM device. 

DRAM devices with ×8 and ×16 interfaces use 64 and 128 

TSVs to transfer between the DRAM and CGRA, respective-

ly. This TSV-based stacking approach is similar to one devel-

oped for stacking a wide-I/O DRAM device atop a processor 

die [4]. In DRAMA, the same steering logic that directs data 

to/from the left or right set of banks also directs data 

through the TSVs to the CGRA layer. Additional TSVs trans-

fer command and address bits from the CGRA layer to the 

DRAM device to indicate the type of operation and the ad-

dress involved (which in turn determines the bank, row, and 

column within the DRAM device). Therefore, data is trans-

ferred between the CGRA and DRAM device using normal 

DRAM operations. Each CGRA connects to the DRAM de-

vice through a small amount of input/output buffering and 

logic that then connect to the TSVs (Figure 1).  

Current 3D interconnect technology allows a TSV pitch 

size of 50µm for 3D DRAM stacking [4], thus  128 TSVs have 

an area of only ~0.32 mm2. Since the typical area of DDR3 

and DDR4 devices ranges from 30 mm2 to 80 mm2 [6], the 

area overhead of the additional TSVs is negligible. This TSV-

based stacking provides the same peak bandwidth per de-

vice as the off-chip data I/O bus connection.  

2.2. CGRA Architecture 

CGRAs exploit spatial parallelism to accelerate a wide range 

of applications. Each CGRA is a heterogeneous grid of 32-bit 

coarse-grained functional units (FUs) and small distributed 

storage (for intermediate results) connected by a configura-

ble routing switches. Based on synthesis results of FUs and 

switches, we estimate that the area of a CGRA with 64 FUs is 

~0.832 mm2 in 40 nm technology targeted at 800 MHz.  

Each CGRA also includes a simple memory controller 

(MC) to issue memory requests to its DRAM device. This 

CGRA-side MC does not require complex scheduling 

queues. Generally, accelerated kernels include little or no 

data-dependent control flow and avoid “pointer chasing”, so 

the memory request order can usually be optimized during 

kernel development. When CGRAs are launched, the control 

of DRAMs is passed to CGRA-side MCs and the processor-

side MC stops sending commands like ACT and CAS. The 

processor and CGRAs do not operate on the same data set 

simultaneously. When CGRAs are working, the processor 

busy-waits until CGRA computations are completed to avoid 

frequent concurrent accesses. Thus, no changes to memory 

consistency are needed. If the processor-side MC requires 

sending memory commands, it first needs to halt CGRA-side 

MCs (by writing to a mode register). CGRA-side MCs then 

close pages before the processor-side MC takes control back. 

Next, the processor-side MC activates the required page and 

accesses data. The same mechanism is used for refreshing. 

CGRAs in DRAMA use physical memory addressing, and 

usually operate on big data structures (like large images and 

matrices). Big-memory workloads rarely benefit from virtual 

memory features such as page swapping [1]. We adopt 

memory segmentations without paging for region of 

memory accessed by CGRAs. This approach maps contigu-

ous region of virtual memory to contiguous region of physi-

cal memory. This eliminates virtual memory overheads due 

to TLB misses for the large data structures accessed by 

CGRAs in DRAMA. 

3 SOFTWARE MODIFICATIONS  

The conventional DIMM architecture interleaves each 64-bit 

data block amongst DRAM devices, each of which stores 4, 8, 

and 16 bits for ×4, ×8, and ×16 DRAM devices, respectively. 

However, DRAMA requires that all data used by each CGRA 

be located within the DRAM device to which that CGRA is 

attached. Maintaining compatibility with the existing DIMM 

Figure 1. DRAMA CGRA stacked on top of DRAM Device. 
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architecture and interface requires rearranging data both to 

partition it across CGRAs for parallel processing and to en-

sure that all sub-words of a given data word are written to 

the same DRAM device. 

Figure 3 (top-left) shows an example of a 4×4 array of 32-

bit words (A–R), where the four quadrants of the array 

should be distributed among the four ×16 DRAM devices in 

a DIMM as indicated. Each 32-bit data word consists of 16-bit 

upper and lower subwords, labeled “1” and “0”, respective-

ly. Figure 3 (top-right) shows how this array would typically 

be distributed across ×16 DRAM devices, separating the up-

per and lower halves of each 32-bit word, and failing to 

group the data for each quadrant into a single device. Figure 

3 (bottom) shows a “shuffled” arrangement of the same data 

that partitions data appropriately for DRAMA processing 

when it is written to the DRAM using the conventional inter-

face. The shuffling can be performed by the use of modified 

data structures, or by explicitly writing shuffled data during 

data structure initialization at the beginning of a program. To 

avoid inconsistencies between the processor’s cache and 

main memory, CGRAs’ shuffled input data is stored to 

memory using non-temporal instructions, which bypass the 

cache hierarchy (and avoid the need to flush the cache). After 

DRAMA execution, the processor “unshuffles” data pro-

duced by the CGRAs before using it. 

4 EVALUATION 

We evaluate the efficacy of DRAMA executing embedded 

applications (SIFT, Tracking (TRCK), and Disparity map 

(DISP) from the San Diego Vision suite [12]), as well as scien-

tific applications (LBM and MRI-Gridding (MRIG) from the 

Parboil suite [11]). The most compute- and data-intensive 

portions of each application are converted to dataflow 

graphs representing CGRA kernels (the remaining parts are 

executed by the processor). The energy consumption of each 

kernel is based on the number and type of computations in 

its graph. Kernel latencies are based on the depth and type of 

computations in the dataflow graph after it is mapped to the 

CGRA functional units. For all presented comparisons, 

DRAMA CGRAs have 64 FUs and operate at 800 MHz. 

Baseline architectures without CGRAs are summarized in 

Table 1. For scientific application comparisons, the baseline is 

a high-performance four-way processor with DDR3-1600 

DRAMs; for embedded application comparisons, the base-

line is an embedded two-way processor with LPDDR2-1066 

DRAMs. In each comparison, DRAMA uses the same proces-

sor and memory parameters as the corresponding baseline. 

For DRAMA and baseline architectures, we use DDR3-1600 

devices with ×8 and ×16 interfaces and LPDDR2-1066 devic-

es with an ×16 interface. To form a 64-bit bus between pro-

cessor and memory, there exist eight and four DRAM devic-

es for ×8 and ×16 interfaces, respectively. 

We extend gem5 [2] and use McPAT [5] to evaluate the 

performance and power consumption of the DRAMA archi-

tecture, respectively. To estimate area and power of CGRAs 

and kernels executing on them, we synthesize CGRA’s FUs 

and switches using Synopsys Design Compiler. 

4.1 Performance 

Figure 4 demonstrates the significant performance improve-

ments of DRAMA for both scientific and embedded applica-

tions over the corresponding baseline architectures. This is 

the case even when comparing to a baseline with a doubled 

clock frequency (“Baseline 2x Freq”). For scientific applica-

tions, eight CGRAs each using a 64-TSV connection provide 

better speedup than four CGRAs each using a 128-TSV. In 

this case, the increased compute ability of additional CGRAs 

outweighs the increased bandwidth. In embedded applica-

tions, DISP achieves a speedup of over 18× due to regular 

memory access pattern and simple data flow graphs with 

high spatial parallelism. Overall, DRAMA’s high speedups 

originate from parallel execution of CGRAs, spatial parallel-

ism exploited by CGRAs, and direct data communication 

between CGRAs and DRAM devices (i.e., lower data com-

munication latency for applications with low-temporal lo-

TABLE 1. KEY ARCHITECTURE PARAMETERS 

Baseline Architecture 

Feature 
Scientific 

Comparisons 
Embedded 

Comparisons 

Processor Frequency 2 GHz 1 GHz 

Superscalar 4-way 2-way 

ROB/IQ/LSQ Entries 128/36/80 40/12/22 

Integer / FP ALUs 3 / 1 2 / 1 

L1I/L1D/L2 Size (KB) 32/32/512 32/32/512 

Memory 
DDR3-1600  

(×8  and ×16) 
LPDDR2-S4-1066 

(×16) 

   

DRAM Design 

Feature ×8 Interface ×16 Interface 

# Devices (# CGRAs) 8 4 

DRAMA TSVs Per Device 64 128 

 
Figure 3. Data arrangement across devices for a 4×4 array of 32-
bit words (A – R). Original data arrangement (top) and shuffled 
arrangement for DRAMA acceleration (bottom). 
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cality due to not moving data across the cache hierarchy). 

4.2 Energy Consumption 

To evaluate energy consumption of DRAMA, we consider 

dynamic and leakage energy of the processor, cache hierar-

chy, and CGRAs. When CGRAs are working, the processor 

polls CGRA status registers at 1/10th of the processor’s base-

line frequency. Figure 5 shows the energy consumed for 

transferring data across the register file, cache hierarchy, and 

memory I/O in DRAMA normalized to that in the baseline 

architecture; DRAMA significantly reduces energy con-

sumed for transferring data by 66-95%. In brief, DRAMA can 

greatly reduce data movement energy because of (1) pro-

cessing most of data near memory devices and therefore 

eliminating data movement in the cache hierarchy and regis-

ter file, and (2) using TSVs that consume 11.2× less I/O ener-

gy than off-chip interconnects in LPDDR2 [4]. 

Figure 6 shows the energy breakdown of DRAMA (com-

bined processor, CGRAs, memory I/O), normalized to ener-

gy consumption of the baseline architecture. Processor ener-

gy is broken down into three parts of (1) instruction fetch 

and control, (2) execution units, and (3) on-chip data move-

ment across the cache hierarchy, buses, and register file. 

DRAMA reduces total energy consumption over that of the 

baseline architecture by 68-95%. 34-60% of this energy reduc-

tion is achieved by using CGRAs and 40-66% of this reduc-

tion is achieved by stacking CGRAs atop DRAM devices. The 

DRAMA architecture with eight DRAM devices (hence eight 

CGRAs) provides more energy savings than the DRAMA 

architecture with four DRAM devices. Although eight 

CGRAs have higher combined CGRA leakage energy than 

four CGRAs, the leakage energy decreases due to shortened 

execution time. DISP executed by four CGRAs obtains the 

highest total energy reduction of 95%. The main reason for 

this significant energy reduction is that data movement en-

ergy in DISP is reduced by 95% which constitutes 66% of its 

total processor and memory I/O energy consumption.  

Overall, DRAMA can substantially reduce energy con-

sumption. Due to absence of the instruction fetch and control 

overhead, CGRAs process data much more energy-efficiently 

than processors. Moreover, unnecessary data movement is 

eliminated by stacking CGRAs atop DRAM devices. Finally, 

CGRAs speed up execution, reducing system leakage energy. 

5 CONCLUSION 

In this paper, we proposed a new architecture, DRAMA, to 

enable accelerated data processing near memory. DRAMA 

exploits local data processing to reduce data movement en-

ergy. DRAMA can be implemented using the current 3D 

stacking technology without changing the underlying 

DRAM architecture. We showed that DRAMA can consider-

ably reduce energy consumption (68-95%) and improve per-

formance by up to 18.4×. 
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