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Abstract 
Energy consumed for transferring data across the processor 
memory hierarchy constitutes a large fraction of total system 
energy consumption, and this fraction has steadily increased 
with technology scaling. In this article, we present a near-
DRAM acceleration (NDA) architecture wherein light-weight 
processors (LWPs) with the same ISA as their host processor 
are 3D-stacked atop commodity DRAM devices in a standard 
memory module to efficiently process data. In contrast to pre-
vious architectures, our NDA architecture requires negligi-
ble changes to commodity DRAM device and standard 
memory module architectures. This allows our NDA to be 
more easily adopted in both existing and emerging systems. 
Our experiments demonstrate that, on average, our NDA-
based system consumes almost 65% lower energy at nearly 
2× higher performance than the baseline system.  
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1. Introduction 
Energy inefficiency in current systems mainly originates 
from transferring data between where it is stored and where 
it is processed. With technology scaling, the fraction of data 
transfer energy in the total system energy has steadily and sig-
nificantly increased [1]. Therefore, energy consumed for data 
transfers becomes much higher than actual computations. 

To reduce data transfer energy, we can decrease the dis-
tance of data transfers by processing data near or in memory. 
This motivates us to re-examine the previous processing-in-
memory (PIM) architectures (e.g., [2]) exploiting low access 
latency and high aggregate bandwidth enabled by integrating 
processor logic and DRAM on the same die. Such PIM archi-
tectures, however, suffered from (1) high manufacturing 
complexity; (2) poor processor logic performance; (3) large 
DRAM area per bit; and (4) design/verification challenges as-
sociated with custom DRAM architectures.  

Recently, 3D-stacking has emerged as a promising inte-
gration technology. It can solve some of the critical problems 
faced by the previous PIM architectures because it integrates 
separate logic and DRAM layers with high-bandwidth low-
energy through silicon vias (TSVs). Leveraging 3D-stacking 
technology, researchers have proposed near-DRAM acceler-
ation (NDA) architectures that integrate accelerator logic and 
custom 3D DRAM devices to reap the benefits of both accel-
erators and near-memory processing (e.g., [3, 4]). More spe-
cifically, they focus on either accelerator architecture where 

its memory system is separate from the host processor’s main 
memory system (similar to a discrete GPU architecture) [3] 
or the integration of accelerators and DRAM [4]. 

In this article, we stack a die of light-weight low-power 
processors (LWPs) with the same ISA as the host processor 
atop commodity 2D DRAM dies. It can be seamlessly inte-
grated with the host processor’s main memory system based 
on standard off-chip memory modules which can provide 
much larger capacity than other memory architectures such 
as high-bandwidth memory (HBM) for running traditional 
non-NDA applications. We first present an NDA architecture 
that requires no change to the host processor design and min-
imal changes to the commodity DRAM device’s I/O circuitry 
while maintaining the compatibility with the standard DDR 
interface and DIMM architecture. Second, we explore three 
NDA microarchitectures that can provide diverse DRAM-ac-
celerator bandwidth using commodity DRAM devices. 
Lastly, we evaluate the performance and energy-efficiency of 
our NDA architecture after discussing the benefit of 3D-
stacking LWPs atop DRAM devices, compared with our prior 
architecture integrating reconfigurable accelerators [5]. 

2. Background 

2.1 Conventional DRAM Architecture 
The internal architecture of DRAM and its I/O circuitry is de-
signed to facilitate high-bandwidth, low-cost connections to 
the accelerators stacked atop DRAM devices using TSVs. 
Figure 1(a) depicts a DDR3 DRAM device with a ×8 inter-
face (8-bit data I/O per device), which consists of eight banks, 
each having two sub-banks split by the middle control logic. 
Except sharing common resources such as I/Os and DLLs, 
each bank operates independently of others. Each sub-bank is 
divided into multiple two-dimensional mats. The size of a mat 
is determined by the latency constraints of DRAM operations 
and the sensing ability of voltage difference induced by 
charges in a cell. This hierarchical structure of both control 
(decoders, wordlines, and column-select lines) and datapath 
(bitlines and local/global I/Os) within a bank is critical to im-
prove area efficiency, bandwidth, and latency. Sense amplifi-
ers are selectively utilized to speed up data delivery. 

The eight banks are divided into four left and four right 
banks. Each bank group shares a 64-bit inter-bank datalines 
(iBD), consisting of upper and lower 32-bit iBD lines that 
connect global datapath of each bank to data I/O pins shared 
by all the banks. To serve a read request, multiplexers select 
64-bit data from the left or right iBD lines, which is serialized 
and sent through the 8-bit I/O pins. The I/O data rate of DDR3 
devices is 8× DRAM core clock frequency (burst length of 8) 
so that there are 8× more iDB lines than data I/O pins. 
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2.2 Single-ISA Heterogeneous Processing 
Amongst the various candidates of near-DRAM acceleration 
architectures, such as GPU, FPGA, and coarse-grain recon-
figurable accelerator (CGRA), placing processor cores with 
short SIMD engines and the same ISA as the host processor 
atop DRAM devices can be intriguing. By controlling key de-
sign parameters of CPU cores, such as issue width, reorder 
buffer size, and pipeline depth, a wide range of trade-offs be-
tween energy and performance is possible [6], which led to 
multicore design studies (e.g., [7]) and commercialization 
(e.g., [8, 9]). Such heterogeneous processing is initially fo-
cused on improving energy efficiency of mobile CPUs by mi-
grating threads from big to little cores at light computing 
loads [8], but the other operation scenarios such as assigning 
threads/tasks to these heterogeneous cores depending on their 
performance/efficiency requirements are gaining interest as 
well, exemplified by Intel Xeon Phi [9].  

3. Architecting NDA with Single-ISA Hetero-
geneous Processing 

GPU, FPGA, CGRA, or low-power cores can be accelerator 
logic of the NDA architecture. This paper focuses on LWPs 
with the same ISA as the host processor due to ease of pro-
gramming and maturity in development environments. High 
energy efficiency offered by LWPs is important because near-
memory architectures have more stringent power/thermal 
constraints than the host processor. 

The key advantage of single-ISA heterogeneous pro-
cessing over other acceleration architectures is that the code 
designed to exploit the accelerators can be executed without 
any change even if the accelerators are unavailable. It is also 
easy to dynamically determine whether to execute certain 
computational kernels near DRAM (using the light-weight or 
little cores) or in the host processor (where relatively power-
ful or big cores are populated) depending on the kernel types 
and big/little cores’ compute capability. In addition, simpler 
debugging and relatively stable development environments 
make single-ISA heterogeneous processing a compelling al-
ternative to GPU, FPGA, and CGRA for near data processing.  

NDA facilitates energy-efficient near-memory pro-
cessing by stacking LWPs atop each DRAM device. A LWP 
is connected to the internal DRAM datalines using TSVs, as 
illustrated in Figure 1(b). Each LWP operates on data stored 

in the associated device independently of and in parallel with 
the LWPs on the other DRAM devices on the DIMM(s). This 
NDA architecture does not require changes to the processor 
or DIMM interface, and only minimal changes to the under-
lying DRAM design. Therefore, it can be used with existing 
systems to accelerate NDA-enhanced applications. Further-
more, this NDA architecture allows existing un-accelerated 
applications to run on NDA-equipped platforms without any 
performance penalty [6].  

Traditional host processors can offload kernels to 
DRAM-side LWPs. Our NDA architecture transfers data 
through high-bandwidth and low-energy 3D interconnects 
(TSVs) between DRAM devices and their corresponding 
LWPs without the processor's intervention and processes the 
data using the LWPs. This minimizes data transfers through 
low-bandwidth and high-energy off-chip interconnects be-
tween the processor and DRAM devices. The kernel data pro-
cessed by LWPs must be distributed evenly across DRAM 
devices to balance computations for maximal acceleration. 

3.1 Connecting Accelerator with DRAM 
We propose three microarchitectures to connect a LWP and a 
DRAM device using TSVs. Here we assume the TSV I/O en-
ergy is 4 pJ/b, which is 80% lower than the off-chip I/O en-
ergy of a DDR3 interface (Table 1). The LWP-side memory 
controller (MC) manages data transfers between the two dies. 

NDApD (connecting TSVs to existing iBD lines): A 
LWP simply reads or writes data through the TSVs connected 
to the existing DRAM iBD lines without modifying the un-
derlying DRAM device design. TSVs are connected to the 
iBD lines between iBD multiplexers and data (de)serializer 
(Figure 2). This microarchitecture is similar to one developed 
for stacking a wide-I/O DRAM device atop a processor die 
[10]. NDApD has no area overhead apart from inserted TSVs 
(Table 2). Both the host and the LWP of NDApD adopt the 
same data-transfer mechanism and the same peak per-device 
bandwidth. However, the latter consumes 51% lower energy 
per 8-byte read/write data transfer than the former.  

NDApD×2 (connecting TSVs to doubled iBD lines): 
NDApD×2 is similar to NDApD except that it has twice the 
iBD lines and the TSVs, accordingly. This doubles the LWP-
DRAM bandwidth and entails doubling local/global I/Os but 
reducing the number of column select lines by half per bank. 

Figure 1: (a) A DDR3 device with 8 banks of A to H and ×8 I/O interface (left) and DRAM I/O datapath (right). (b) NDA archi-
tecture with light-weight processors stacked atop DRAM devices.  
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NDApD×2 is more efficient than NDApD in read/write ac-
cesses because the overhead of sending address/command is 
amortized over more bits per data transaction. The LWP uti-
lizes all iBD lines whereas the host processor uses only a half 
of iBD lines. 

NDApB (connecting TSVs to global I/Os of each bank): 
All the banks in a DRAM device share the TSV connection 
in both NDApD and NDApDx2. In NDApB, we instead pro-
vide each independently controllable bank with a separate 
TSV connection to the LWP. NDApB can exploit the benefit 
of bank-level parallelism by accessing data from multiple 
banks concurrently. In this microarchitecture, we connect 
TSVs to global I/Os of each bank, forming eight inde-
pendently accessed TSV connections. NDApB increases the 
LWP-DRAM bandwidth substantially with only small over-
head associated with TSVs (Table 2). The latency and energy 
of accesses initiated from LWPs decrease as well due to iBD 
bypassing. The LWP-side MC directs DRAM requests/re-
sponses between the LWP and its corresponding bank.   

TSV overhead: We assume coarse-grain TSVs (pitch size 
50µm) for power/ground and fine-grain TSVs (pitch size 
5µm) with 4:2 redundancy [11] for signals. Coarse-grain 
TSVs provide enough room for PHY, test, and ESD protec-
tion while fine-grain TSVs with redundancy improves the 
yield. With this scheme, the area overhead of NDApB that 
requires the most TSVs among the three microarchitectures 
is 0.243mm2, which is negligible considering that the typical 
data area of DDR3/4 is ranging from 50 to 100 mm2 [12]. 

Summary: We quantify the overheads and savings through 
SPICE simulations assuming 3-metal layers, 28nm DRAM 
process, and 6F2 cells. Table 2 lists bandwidth, area, timing, 
and energy of the three microarchitectures based on a DDR3-
1600 DRAM device. In all microarchitectures, the underlying 
DRAM architecture remains intact, making the proposals 
low-cost and compatible with the conventional DDR3 de-
vices. Table 2 indicates that our microarchitectures have a 
limited impact on the DRAM area. DRAM access latency 
does not increase either; the LWP-DRAM access latency 
even decreases by 6ns in NDApB. LWPs consume less energy 
to transfer the same number of bits than host processors be-
cause LWPs obviate the need of serializing data and also the 
TSVs used for the LWPs have lower load capacitance than 
the pads, bumps, and PCBs that are used to connect a proces-
sor and DRAM packages. The wider datapath structures im-
proves energy efficiency further because the overhead of 
sending/decoding a command/address is amortized over more 
bits per data transfer transaction. 

3.2 Communication to Memory and Host by 
LWPs 

Memory Controller: Each LWP requires an MC to issue 
memory requests to its DRAM device through TSVs. For all 
the LWP-DRAM connections proposed above, the LWP-side 
MC manages data transfers between the LWP and DRAM de-
vice in compliance with DRAM timing constraints including  
tFAW and tRRD. The complexity of the LWP-side MC can 
be lower than that of the host-side MC because many kernels 
running on LWPs include little or no data-dependent data ac-
cesses and pointer chasing. 

DRAM Ownership Transition between a Host and LWPs: 
When a kernel is launched, the host-side MC hands over the 
control of a DRAM rank to LWP-side MCs. The host-side 

Figure 2: NDA microarchitectures. 

Table 1. Area, timing, and energy parameters of an 8Gb DDR3-1600 ×8 DRAM device. ×8 = off-chip data I/O bit-width is 8.

Device 
Row buffer 

size 
Peak  

bandwidth 
Core Freq. I/O Freq. 

Number of 
banks 

Area 
Access latency 

(tCL) 
RD or WR energy 

without I/O 
Off-chip I/O  

energy 

DDR3-1600 ×8 1KB 12.8 Gbps 200 MHz 800 MHz 8 80 mm2 13.75 ns 13 pJ/b 20 pJ/b 

 
Table 2. Summary of bandwidth, area, timing, and energy of different microarchitectures to connect Accelerators and DRAM 
devices. Numbers are relative to DDR3-1600 ×8 parameters given in Table 1. S/A = Sense Amplifiers. 

Connection between  
LWP and DRAM 

Number of 
data TSVs 

Peak bandwidth (Gbps) 

Area change LWP timing change
CPU 

timing 
change 

LWP 
 RD energy 
(without I/O)

CPU  
RD energy  

(without I/O) 
Through I/O 

pins 
Through TSV 

pins 

NDApD 64 12.8 12.8 0.2% (TSV) - - -51% (-7%) - 

NDApD×2 128 12.8 25.6 3.3% (S/A, TSV) - - -64% (-39%) ~0% (+0.3%) 

NDApB 512 12.8 102.4 1.2% (TSV) Decrease tCL by 6ns - -59% (-28%) ~0% (+0.1%) 
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MC stops sending commands to the DRAM rank with active 
LWPs. This is to avoid concurrent accesses by both the host 
processor and the LWPs. When the ownership of a DRAM 
rank switches, its banks are in the precharged states. Thus, 
bank conflicts are avoided. When the host processor needs to 
access the DRAM ranks with active LWPs, LWP operations 
are suspended by writing to a DRAM mode register and the 
LWP-side MCs close (precharge) DRAM pages. At the same 
time, the host-side MC assumes that all DRAM row buffers 
in that rank are currently deactivated when it takes back the 
control of the DRAM rank. Then, the host-side MC can acti-
vate the required DRAM row and access data. 

In a multi-programmed environment, the host processor 
might access the DRAM rank with active LWPs. One way to 
alleviate such a problem is to partition main memory space 
into two groups: addresses mapped to conventional and LWP-
enabled ranks, respectively, guided by memory allocation 
policies. Memory requests from applications that do not uti-
lize LWPs will not interfere with memory requests of active 
LWPs. Similarly, the same ownership transition mechanism 
can be used when the host-side MC must refresh the rank with 
active LWPs. Periodic refresh operations from the host-side 
MC are unavoidable, but refresh intervals are long enough 
(e.g., 7.8μs in DDR3) to allow LWPs to make considerable 
progress in the interim. LWPs are aware of refresh intervals 
and can suspend their normal operations right before the re-
fresh command from the processor-side MC. 

Host-LWP Communication: The host processor utilizes 
DRAM memory-mapped registers to communicate with 
LWPs through the host-DIMM interface. The host-side MC 
transfers necessary parameters and triggers kernel execution 
on LWPs by writing to the kernel registers. This avoids 
changing the host-DIMM interface as existing MCs support 
accessing programmable mode registers in conventional 
DRAM. LWPs can notify their execution status to the host by 
writing to the status registers in their local DRAM devices. 
The host periodically polls these memory-mapped status reg-
isters to check for kernel completion or exceptions. The status 
register read by the host does not interfere with DRAM ac-
cesses by the LWP because the status register that is supplied 
onto the off-chip bus uses a separate datapath in DRAM. 

4. Software Issues in Exploiting NDA 
Target Applications: Data processing in many computer vi-
sion, scientific, and engineering data-intensive applications 
can be split into smaller computations executed in parallel 
with partitioned data. Exploiting LWPs for energy-efficient, 
accelerated data processing and high-bandwidth and low-en-
ergy 3D interconnects, NDA can process and analyze big data 
effectively. The host processor can orchestrate data sharing 
between LWPs by duplicating some of boundary data to re-
duce inter-LWP communication. After LWPs complete com-
putations, their output data is processed and merged by the 
host processor. 

Programming Model, Cache Coherence and Memory 
Consistency: NDA can adopt programming and memory 

models similar to ones developed for heterogeneous compu-
ting CUDA and OpenCL. In such computing models the host 
processor is responsible for running the OS and the sequential 
fraction of a given application, while LWPs execute the data-
intensive parallel kernels. In managing memory coherency 
and consistency between the host processor and the LWPs 
(near DRAM devices), NDA architecture also borrows cur-
rent implementations developed for discrete GPUs perform-
ing explicit data transfers between the host processor and 
GPU memory spaces. The cost of the data transfers is typi-
cally amortized because many GPU kernels dominate the to-
tal execution time and iteratively compute on data transferred 
to its memory space before they transfer back the final com-
puted result to the host processor memory space. 

Supporting Virtual Memory: The host processor and the 
LWPs that run an application share a virtual memory space. 
The host processor handles the page table entries, whereas the 
LWPs cannot access the entries directly. When a kernel 
launches, the host sends active page information to the LWPs, 
which can then detect page faults. Page allocation is disabled 
in the LWPs. A LWP terminates the kernel when it experi-
ences faults and exceptions that cannot be served by itself, 
such as system calls. 

Arranging Data for Acceleration: a 64-bit data block is in-
terleaved across DRAM devices in a rank when used by the 
host processor whereas a LWP in NDA is mapped to a single 
DRAM device. Because the LWP should process an entire 
block, not its fragment, the host processor should shuffle data 
before/after LWPs utilize it. This shuffling overhead is amor-
tized as the data transfer cost is amortized in discrete GPUs. 

5. Evaluation 

5.1 Methodology 
For evaluation we take 10 benchmarks from the San Diego 
Vision (DISP and SIFT) [13], Parboil (LBM and MRIG) [14], 
CORAL (HACC) [15], Splash-2 (OCN) [16], and Rodinia 
(KM, SRAD, HS, and BP) [17] suites. Table 3 summarizes 
the characteristics of the tested applications.  

We extend gem5 with the ARM ISA to model and simu-
late our NDA architecture, where we consider ARM’s Cortex 
A15- and A7-like processors for the host and light-weight 
processors, respectively (Table 5). We use McPAT [18] to 
model energy consumption of host and lightweight processor 
cores, caches, and other on-chip units. As detailed by our 
prior work [5], we integrate modified DRAMPower [19] with 
gem5 to evaluate energy consumption of DDR3-1600 DRAM 
devices and their off-chip and TSV I/O interfaces (Table 5). 

5.2 Result 
We compare the performance of NDA against the baseline ar-
chitecture where the host processor runs a given benchmark. 
We run the whole application using both the host processor 
and LWPs while LWPs run only the kernels. In our NDA ar-
chitecture, we conservatively assume that it takes 1.25ns to 
latch (to minimize skew) and transfer data between a DRAM 
device and a LWP over TSVs. 
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Bandwidth Utilization: Table 4 compares the bandwidth uti-
lization of the baseline with that of NDApD, NDApD2x, and 
NDApB. On average, our NDA architecture provides more 
than 3× higher bandwidth utilization than the baseline be-
cause each LWP independently accesses its corresponding 
DRAM device (more flexible, fine-grain DRAM accesses) 
whereas the baseline accesses all DRAM devices in a lock-
step manner. 

Speedup: The triangles in Figure 3 represent the speedup of 
our NDA architecture over the baseline. They show that our 
NDA architecture improves the performance of given appli-
cations. The speedup numbers include execution time of both 
software and accelerated kernel(s). High speedups originate 
from (1) concurrent execution by LWPs; (2) lower memory 
access latency for 3D-stacked LWPs atop DRAM devices; (3) 
each LWP’s independent accesses of each DRAM device, 
which improves the utilization of given bandwidth compared 

to the baseline where all DRAM devices must be accessed in 
a lock-step manner (cf. Table 5); and (4) higher memory 
bandwidth of NDApD×2 and NDApB for LWPs, respec-
tively. Some benchmarks such as MRIG do not take ad-
vantage of our NDA architecture because they exhibits nota-
ble temporal data locality and benefits from the host proces-
sor’s large L2 cache.  

NDApD, NDApD×2, and NDApB provide 1.91×, 2.06×, 
1.95× higher geometric-mean performance than the baseline, 
respectively. We observe that NDApD×2 and NDApB do not 
lead to significantly higher performance than NDApD. We 
identify two primary reasons. First, the limited computing ca-
pability of LWPs, each of which can use at most two ALUs 
per cycle, is insufficient to fully exploit the higher bandwidth 
of NDApD×2 and NDApB. In contrast, each CGRA has a 
sufficient number of ALUs and thus parallel memory requests 
to utilize the given bandwidth of NDApD×2 and NDApB. 
Furthermore, NDApB with eight 64-bit independent memory 
channels (one channel per bank) for a LWP offers lower per-
formance than NDApD×2 with a single 128-bite memory 
channel for a LWP. This is because a LWP is an in-order core 
and it cannot efficiently utilize the NDApB providing 8 inde-
pendent 64-bit memory channels while NDApD×2 transfers 
more data per one 128-bit wide memory channel (more data 
transfer per memory access). That is, NDApD×2 offers 
shorter latency per 64B memory request (i.e., cache line size) 
than NDApB. Second, LWPs have their own local L1 caches 
while CGRAs do not. These local L1 caches diminish the 
benefit of higher bandwidth provided by NDApD×2 and 
NDApB.  

Table 3. Benchmarks used in our evaluation

Name Description # of Kernels Iterative? 
Replaced 

Exec. Time 
Shuffling 
Overhead 

BP Back propagation [17] 4 Yes 99.9% 1.6% 

DISP Disparity map [13] 10 No 99.9% 0.1% 

HACC Hardware accelerated cosmology code [15] 2 Yes 99.9% 1.5% 

HS Hotspot [17] 2 Yes 99.9% 1.1% 

KM K-means clustering [17] 1 Yes 99.9% 0.7% 

LBM Lattice-Boltzmann method fluid dynamics [14] 1 Yes 99.9% 1.3% 

MRIG Magnetic resonance imaging gridding [14] 1 No 98.5% 0.14% 

OCN Ocean movements [16] 16 Yes 81.7% 1.6% 

SIFT Scale-invariant feature transform [13] 4 No 92.7% 0.1% 

SRAD Speckle reducing anisotropic diffusion [17] 3 Yes 99.9% 0.2% 

Table 5: System configuration parameters.

Host Processor 

Core 

Frequency (2GHz) 

4-way out-of-order 

ROB/IQ/LQ/SQ (128/36/48/32) 

INT/FP ALU (3/2) 

Caches 

L1I/L1D/L2 Size (32KB/ 32KB/512KB) 

L1I/L1D/L2 Associativity (4/4/8) 

L1I/L1D/L2 Latency (3/3/16) 

LWP (1 core per DRAM die, total of 8 cores)

Core 

Frequency (1.2GHz) 

2-way in-order 

INT/FP (1/1) 

Caches 

L1I/L1D Size (32KB/ 32KB) 

L1I/L1D Associativity (2/4) 

L1I/L1D Latency Cycles (2/2)  

Main Memory Subsystem 

Memory Controller 

Page Policy (open) 

Scheduling Policy (FR-FCFS) 

RD/WR Request Queues (40/40) 

DRAM 
(DDR3-1600, x8) 

tRCD/tCL/tRP (13.75ns/13.75ns/13.75ns)  
tRAS/tCCD/tWTR (35ns/5ns/7.5ns)  
tWR/ tRTP/ tRTW (15ns/7.5ns/2.5ns) 
tRRD/tFAW/ tBURST (40ns/6.25ns/5.0ns) 
tRFC/tREFI (300ns/7.8µs) 

Table 4: bandwidth utilization.

 Baseline NDApD NDApDx2 NDApB 

DISP 15.1% 34.9% 42.6% 37.0%

HACC 6.1% 22.8% 25.1% 23.1%

HS 9.2% 22.5% 24.9% 23.4%

KM 1.6% 12.1% 12.7% 12.0%

LBM 8.7% 44.9% 46.9% 45.3%

MRIG 1.6% 5.8% 5.8% 5.8%

OCN 14.5% 40.1% 41.6% 40.5%

SIFT 3.4% 25.5% 28.6% 27.2%

BP 9.4% 7.2% 7.4% 7.3%

SRAD 8.7% 20.4% 22.2% 20.9%
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Energy: NDA improves total energy consumption by exploit-
ing energy-efficient computations using LWPs near DRAM 
devices and energy-efficient data transfers using TSVs. The 
stacked bars in  Figure 3 show the energy dissipation of the 
baseline and NDA architectures NDApD, NDApD×2, and 
NDApB consume 64%, 68%, and 64% lower geometric-
mean energy than the baseline, respectively. The lower en-
ergy consumption is mainly contributed by three factors: (1) 
lower data transfer energy through 3D interconnects, (2) 
higher energy-efficiency of LWPs than the host processor; 
and (3) lower processor leakage and DRAM background en-
ergy due to shorter execution time. On average, the power 
consumption of the host processor is 5.1W while that of a 
LWP is 0.28W. Lastly, our NDA architecture consumes 
considerably lower “DRAM device” energy due to more 
efficient DRAM accesses (i.e., higher DRAM page (row 
buffer) hit rates) facilitated by each LWP’s independent 
access of each DRAM device.  

6. Conclusion 
We proposed an NDA architecture enabling accelerated data 
processing near main memory without changing the host pro-
cessor design. NDA concurrently reduces energy and en-
hances throughput in data movement by stacking LWPs atop 
conventional DRAM devices and by off-loading data-inten-
sive operations to the LWPs. By making the ISA of the 
stacked LWPs atop DRAM the same as that of the host pro-
cessor, our NDA architecture is designed to be more easily 
adopted in both existing and emerging systems.  We show that 
our NDA architecture improves the performance of a wide 
range of evaluated applications by 1.91-2.06× and reduces the 
energy consumption by 64-68%.  
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