
1

Near-DRAM Acceleration with Single-ISA Heterogeneous
Processing in Standard Memory Modules

Hadi Asghari-Moghaddam†, Amin Farmahini-Farahani‡, Katherine Morrow‡, Jung Ho Ahn*, and Nam Sung Kim†
†University of Illinois at Urbana-Champaign, ‡University of Wisconsin-Madison, *Seoul National University

Abstract
Energy consumed for transferring data across the processor
memory hierarchy constitutes a large fraction of total system
energy consumption, and this fraction has steadily increased
with technology scaling. In this article, we present a near-
DRAM acceleration (NDA) architecture wherein light-weight
processors (LWPs) with the same ISA as their host processor
are 3D-stacked atop commodity DRAM devices in a standard
memory module to efficiently process data. In contrast to pre-
vious architectures, our NDA architecture requires negligi-
ble changes to commodity DRAM device and standard
memory module architectures. This allows our NDA to be
more easily adopted in both existing and emerging systems.
Our experiments demonstrate that, on average, our NDA-
based system consumes almost 65% lower energy at nearly
2× higher performance than the baseline system.

Keywords
DRAM, accelerator, near-data processing, die stacking.

1. Introduction
Energy inefficiency in current systems mainly originates
from transferring data between where it is stored and where
it is processed. With technology scaling, the fraction of data
transfer energy in the total system energy has steadily and sig-
nificantly increased [1]. Therefore, energy consumed for data
transfers becomes much higher than actual computations.

To reduce data transfer energy, we can decrease the dis-
tance of data transfers by processing data near or in memory.
This motivates us to re-examine the previous processing-in-
memory (PIM) architectures (e.g., [2]) exploiting low access
latency and high aggregate bandwidth enabled by integrating
processor logic and DRAM on the same die. Such PIM archi-
tectures, however, suffered from (1) high manufacturing
complexity; (2) poor processor logic performance; (3) large
DRAM area per bit; and (4) design/verification challenges as-
sociated with custom DRAM architectures.

Recently, 3D-stacking has emerged as a promising inte-
gration technology. It can solve some of the critical problems
faced by the previous PIM architectures because it integrates
separate logic and DRAM layers with high-bandwidth low-
energy through silicon vias (TSVs). Leveraging 3D-stacking
technology, researchers have proposed near-DRAM acceler-
ation (NDA) architectures that integrate accelerator logic and
custom 3D DRAM devices to reap the benefits of both accel-
erators and near-memory processing (e.g., [3, 4]). More spe-
cifically, they focus on either accelerator architecture where

its memory system is separate from the host processor’s main
memory system (similar to a discrete GPU architecture) [3]
or the integration of accelerators and DRAM [4].

In this article, we stack a die of light-weight low-power
processors (LWPs) with the same ISA as the host processor
atop commodity 2D DRAM dies. It can be seamlessly inte-
grated with the host processor’s main memory system based
on standard off-chip memory modules which can provide
much larger capacity than other memory architectures such
as high-bandwidth memory (HBM) for running traditional
non-NDA applications. We first present an NDA architecture
that requires no change to the host processor design and min-
imal changes to the commodity DRAM device’s I/O circuitry
while maintaining the compatibility with the standard DDR
interface and DIMM architecture. Second, we explore three
NDA microarchitectures that can provide diverse DRAM-ac-
celerator bandwidth using commodity DRAM devices.
Lastly, we evaluate the performance and energy-efficiency of
our NDA architecture after discussing the benefit of 3D-
stacking LWPs atop DRAM devices, compared with our prior
architecture integrating reconfigurable accelerators [5].

2. Background

2.1 Conventional DRAM Architecture
The internal architecture of DRAM and its I/O circuitry is de-
signed to facilitate high-bandwidth, low-cost connections to
the accelerators stacked atop DRAM devices using TSVs.
Figure 1(a) depicts a DDR3 DRAM device with a ×8 inter-
face (8-bit data I/O per device), which consists of eight banks,
each having two sub-banks split by the middle control logic.
Except sharing common resources such as I/Os and DLLs,
each bank operates independently of others. Each sub-bank is
divided into multiple two-dimensional mats. The size of a mat
is determined by the latency constraints of DRAM operations
and the sensing ability of voltage difference induced by
charges in a cell. This hierarchical structure of both control
(decoders, wordlines, and column-select lines) and datapath
(bitlines and local/global I/Os) within a bank is critical to im-
prove area efficiency, bandwidth, and latency. Sense amplifi-
ers are selectively utilized to speed up data delivery.

The eight banks are divided into four left and four right
banks. Each bank group shares a 64-bit inter-bank datalines
(iBD), consisting of upper and lower 32-bit iBD lines that
connect global datapath of each bank to data I/O pins shared
by all the banks. To serve a read request, multiplexers select
64-bit data from the left or right iBD lines, which is serialized
and sent through the 8-bit I/O pins. The I/O data rate of DDR3
devices is 8× DRAM core clock frequency (burst length of 8)
so that there are 8× more iDB lines than data I/O pins.

2

2.2 Single-ISA Heterogeneous Processing
Amongst the various candidates of near-DRAM acceleration
architectures, such as GPU, FPGA, and coarse-grain recon-
figurable accelerator (CGRA), placing processor cores with
short SIMD engines and the same ISA as the host processor
atop DRAM devices can be intriguing. By controlling key de-
sign parameters of CPU cores, such as issue width, reorder
buffer size, and pipeline depth, a wide range of trade-offs be-
tween energy and performance is possible [6], which led to
multicore design studies (e.g., [7]) and commercialization
(e.g., [8, 9]). Such heterogeneous processing is initially fo-
cused on improving energy efficiency of mobile CPUs by mi-
grating threads from big to little cores at light computing
loads [8], but the other operation scenarios such as assigning
threads/tasks to these heterogeneous cores depending on their
performance/efficiency requirements are gaining interest as
well, exemplified by Intel Xeon Phi [9].

3. Architecting NDA with Single-ISA Hetero-
geneous Processing

GPU, FPGA, CGRA, or low-power cores can be accelerator
logic of the NDA architecture. This paper focuses on LWPs
with the same ISA as the host processor due to ease of pro-
gramming and maturity in development environments. High
energy efficiency offered by LWPs is important because near-
memory architectures have more stringent power/thermal
constraints than the host processor.

The key advantage of single-ISA heterogeneous pro-
cessing over other acceleration architectures is that the code
designed to exploit the accelerators can be executed without
any change even if the accelerators are unavailable. It is also
easy to dynamically determine whether to execute certain
computational kernels near DRAM (using the light-weight or
little cores) or in the host processor (where relatively power-
ful or big cores are populated) depending on the kernel types
and big/little cores’ compute capability. In addition, simpler
debugging and relatively stable development environments
make single-ISA heterogeneous processing a compelling al-
ternative to GPU, FPGA, and CGRA for near data processing.

NDA facilitates energy-efficient near-memory pro-
cessing by stacking LWPs atop each DRAM device. A LWP
is connected to the internal DRAM datalines using TSVs, as
illustrated in Figure 1(b). Each LWP operates on data stored

in the associated device independently of and in parallel with
the LWPs on the other DRAM devices on the DIMM(s). This
NDA architecture does not require changes to the processor
or DIMM interface, and only minimal changes to the under-
lying DRAM design. Therefore, it can be used with existing
systems to accelerate NDA-enhanced applications. Further-
more, this NDA architecture allows existing un-accelerated
applications to run on NDA-equipped platforms without any
performance penalty [6].

Traditional host processors can offload kernels to
DRAM-side LWPs. Our NDA architecture transfers data
through high-bandwidth and low-energy 3D interconnects
(TSVs) between DRAM devices and their corresponding
LWPs without the processor's intervention and processes the
data using the LWPs. This minimizes data transfers through
low-bandwidth and high-energy off-chip interconnects be-
tween the processor and DRAM devices. The kernel data pro-
cessed by LWPs must be distributed evenly across DRAM
devices to balance computations for maximal acceleration.

3.1 Connecting Accelerator with DRAM
We propose three microarchitectures to connect a LWP and a
DRAM device using TSVs. Here we assume the TSV I/O en-
ergy is 4 pJ/b, which is 80% lower than the off-chip I/O en-
ergy of a DDR3 interface (Table 1). The LWP-side memory
controller (MC) manages data transfers between the two dies.

NDApD (connecting TSVs to existing iBD lines): A
LWP simply reads or writes data through the TSVs connected
to the existing DRAM iBD lines without modifying the un-
derlying DRAM device design. TSVs are connected to the
iBD lines between iBD multiplexers and data (de)serializer
(Figure 2). This microarchitecture is similar to one developed
for stacking a wide-I/O DRAM device atop a processor die
[10]. NDApD has no area overhead apart from inserted TSVs
(Table 2). Both the host and the LWP of NDApD adopt the
same data-transfer mechanism and the same peak per-device
bandwidth. However, the latter consumes 51% lower energy
per 8-byte read/write data transfer than the former.

NDApD×2 (connecting TSVs to doubled iBD lines):
NDApD×2 is similar to NDApD except that it has twice the
iBD lines and the TSVs, accordingly. This doubles the LWP-
DRAM bandwidth and entails doubling local/global I/Os but
reducing the number of column select lines by half per bank.

Figure 1: (a) A DDR3 device with 8 banks of A to H and ×8 I/O interface (left) and DRAM I/O datapath (right). (b) NDA archi-
tecture with light-weight processors stacked atop DRAM devices.

3

NDApD×2 is more efficient than NDApD in read/write ac-
cesses because the overhead of sending address/command is
amortized over more bits per data transaction. The LWP uti-
lizes all iBD lines whereas the host processor uses only a half
of iBD lines.

NDApB (connecting TSVs to global I/Os of each bank):
All the banks in a DRAM device share the TSV connection
in both NDApD and NDApDx2. In NDApB, we instead pro-
vide each independently controllable bank with a separate
TSV connection to the LWP. NDApB can exploit the benefit
of bank-level parallelism by accessing data from multiple
banks concurrently. In this microarchitecture, we connect
TSVs to global I/Os of each bank, forming eight inde-
pendently accessed TSV connections. NDApB increases the
LWP-DRAM bandwidth substantially with only small over-
head associated with TSVs (Table 2). The latency and energy
of accesses initiated from LWPs decrease as well due to iBD
bypassing. The LWP-side MC directs DRAM requests/re-
sponses between the LWP and its corresponding bank.

TSV overhead: We assume coarse-grain TSVs (pitch size
50µm) for power/ground and fine-grain TSVs (pitch size
5µm) with 4:2 redundancy [11] for signals. Coarse-grain
TSVs provide enough room for PHY, test, and ESD protec-
tion while fine-grain TSVs with redundancy improves the
yield. With this scheme, the area overhead of NDApB that
requires the most TSVs among the three microarchitectures
is 0.243mm2, which is negligible considering that the typical
data area of DDR3/4 is ranging from 50 to 100 mm2 [12].

Summary: We quantify the overheads and savings through
SPICE simulations assuming 3-metal layers, 28nm DRAM
process, and 6F2 cells. Table 2 lists bandwidth, area, timing,
and energy of the three microarchitectures based on a DDR3-
1600 DRAM device. In all microarchitectures, the underlying
DRAM architecture remains intact, making the proposals
low-cost and compatible with the conventional DDR3 de-
vices. Table 2 indicates that our microarchitectures have a
limited impact on the DRAM area. DRAM access latency
does not increase either; the LWP-DRAM access latency
even decreases by 6ns in NDApB. LWPs consume less energy
to transfer the same number of bits than host processors be-
cause LWPs obviate the need of serializing data and also the
TSVs used for the LWPs have lower load capacitance than
the pads, bumps, and PCBs that are used to connect a proces-
sor and DRAM packages. The wider datapath structures im-
proves energy efficiency further because the overhead of
sending/decoding a command/address is amortized over more
bits per data transfer transaction.

3.2 Communication to Memory and Host by
LWPs

Memory Controller: Each LWP requires an MC to issue
memory requests to its DRAM device through TSVs. For all
the LWP-DRAM connections proposed above, the LWP-side
MC manages data transfers between the LWP and DRAM de-
vice in compliance with DRAM timing constraints including
tFAW and tRRD. The complexity of the LWP-side MC can
be lower than that of the host-side MC because many kernels
running on LWPs include little or no data-dependent data ac-
cesses and pointer chasing.

DRAM Ownership Transition between a Host and LWPs:
When a kernel is launched, the host-side MC hands over the
control of a DRAM rank to LWP-side MCs. The host-side

Figure 2: NDA microarchitectures.

Table 1. Area, timing, and energy parameters of an 8Gb DDR3-1600 ×8 DRAM device. ×8 = off-chip data I/O bit-width is 8.

Device
Row buffer

size
Peak

bandwidth
Core Freq. I/O Freq.

Number of
banks

Area
Access latency

(tCL)
RD or WR energy

without I/O
Off-chip I/O

energy

DDR3-1600 ×8 1KB 12.8 Gbps 200 MHz 800 MHz 8 80 mm2 13.75 ns 13 pJ/b 20 pJ/b

Table 2. Summary of bandwidth, area, timing, and energy of different microarchitectures to connect Accelerators and DRAM
devices. Numbers are relative to DDR3-1600 ×8 parameters given in Table 1. S/A = Sense Amplifiers.

Connection between
LWP and DRAM

Number of
data TSVs

Peak bandwidth (Gbps)

Area change LWP timing change
CPU

timing
change

LWP
 RD energy
(without I/O)

CPU
RD energy

(without I/O)
Through I/O

pins
Through TSV

pins

NDApD 64 12.8 12.8 0.2% (TSV) - - -51% (-7%) -

NDApD×2 128 12.8 25.6 3.3% (S/A, TSV) - - -64% (-39%) ~0% (+0.3%)

NDApB 512 12.8 102.4 1.2% (TSV) Decrease tCL by 6ns - -59% (-28%) ~0% (+0.1%)

4

MC stops sending commands to the DRAM rank with active
LWPs. This is to avoid concurrent accesses by both the host
processor and the LWPs. When the ownership of a DRAM
rank switches, its banks are in the precharged states. Thus,
bank conflicts are avoided. When the host processor needs to
access the DRAM ranks with active LWPs, LWP operations
are suspended by writing to a DRAM mode register and the
LWP-side MCs close (precharge) DRAM pages. At the same
time, the host-side MC assumes that all DRAM row buffers
in that rank are currently deactivated when it takes back the
control of the DRAM rank. Then, the host-side MC can acti-
vate the required DRAM row and access data.

In a multi-programmed environment, the host processor
might access the DRAM rank with active LWPs. One way to
alleviate such a problem is to partition main memory space
into two groups: addresses mapped to conventional and LWP-
enabled ranks, respectively, guided by memory allocation
policies. Memory requests from applications that do not uti-
lize LWPs will not interfere with memory requests of active
LWPs. Similarly, the same ownership transition mechanism
can be used when the host-side MC must refresh the rank with
active LWPs. Periodic refresh operations from the host-side
MC are unavoidable, but refresh intervals are long enough
(e.g., 7.8μs in DDR3) to allow LWPs to make considerable
progress in the interim. LWPs are aware of refresh intervals
and can suspend their normal operations right before the re-
fresh command from the processor-side MC.

Host-LWP Communication: The host processor utilizes
DRAM memory-mapped registers to communicate with
LWPs through the host-DIMM interface. The host-side MC
transfers necessary parameters and triggers kernel execution
on LWPs by writing to the kernel registers. This avoids
changing the host-DIMM interface as existing MCs support
accessing programmable mode registers in conventional
DRAM. LWPs can notify their execution status to the host by
writing to the status registers in their local DRAM devices.
The host periodically polls these memory-mapped status reg-
isters to check for kernel completion or exceptions. The status
register read by the host does not interfere with DRAM ac-
cesses by the LWP because the status register that is supplied
onto the off-chip bus uses a separate datapath in DRAM.

4. Software Issues in Exploiting NDA
Target Applications: Data processing in many computer vi-
sion, scientific, and engineering data-intensive applications
can be split into smaller computations executed in parallel
with partitioned data. Exploiting LWPs for energy-efficient,
accelerated data processing and high-bandwidth and low-en-
ergy 3D interconnects, NDA can process and analyze big data
effectively. The host processor can orchestrate data sharing
between LWPs by duplicating some of boundary data to re-
duce inter-LWP communication. After LWPs complete com-
putations, their output data is processed and merged by the
host processor.

Programming Model, Cache Coherence and Memory
Consistency: NDA can adopt programming and memory

models similar to ones developed for heterogeneous compu-
ting CUDA and OpenCL. In such computing models the host
processor is responsible for running the OS and the sequential
fraction of a given application, while LWPs execute the data-
intensive parallel kernels. In managing memory coherency
and consistency between the host processor and the LWPs
(near DRAM devices), NDA architecture also borrows cur-
rent implementations developed for discrete GPUs perform-
ing explicit data transfers between the host processor and
GPU memory spaces. The cost of the data transfers is typi-
cally amortized because many GPU kernels dominate the to-
tal execution time and iteratively compute on data transferred
to its memory space before they transfer back the final com-
puted result to the host processor memory space.

Supporting Virtual Memory: The host processor and the
LWPs that run an application share a virtual memory space.
The host processor handles the page table entries, whereas the
LWPs cannot access the entries directly. When a kernel
launches, the host sends active page information to the LWPs,
which can then detect page faults. Page allocation is disabled
in the LWPs. A LWP terminates the kernel when it experi-
ences faults and exceptions that cannot be served by itself,
such as system calls.

Arranging Data for Acceleration: a 64-bit data block is in-
terleaved across DRAM devices in a rank when used by the
host processor whereas a LWP in NDA is mapped to a single
DRAM device. Because the LWP should process an entire
block, not its fragment, the host processor should shuffle data
before/after LWPs utilize it. This shuffling overhead is amor-
tized as the data transfer cost is amortized in discrete GPUs.

5. Evaluation

5.1 Methodology
For evaluation we take 10 benchmarks from the San Diego
Vision (DISP and SIFT) [13], Parboil (LBM and MRIG) [14],
CORAL (HACC) [15], Splash-2 (OCN) [16], and Rodinia
(KM, SRAD, HS, and BP) [17] suites. Table 3 summarizes
the characteristics of the tested applications.

We extend gem5 with the ARM ISA to model and simu-
late our NDA architecture, where we consider ARM’s Cortex
A15- and A7-like processors for the host and light-weight
processors, respectively (Table 5). We use McPAT [18] to
model energy consumption of host and lightweight processor
cores, caches, and other on-chip units. As detailed by our
prior work [5], we integrate modified DRAMPower [19] with
gem5 to evaluate energy consumption of DDR3-1600 DRAM
devices and their off-chip and TSV I/O interfaces (Table 5).

5.2 Result
We compare the performance of NDA against the baseline ar-
chitecture where the host processor runs a given benchmark.
We run the whole application using both the host processor
and LWPs while LWPs run only the kernels. In our NDA ar-
chitecture, we conservatively assume that it takes 1.25ns to
latch (to minimize skew) and transfer data between a DRAM
device and a LWP over TSVs.

5

Bandwidth Utilization: Table 4 compares the bandwidth uti-
lization of the baseline with that of NDApD, NDApD2x, and
NDApB. On average, our NDA architecture provides more
than 3× higher bandwidth utilization than the baseline be-
cause each LWP independently accesses its corresponding
DRAM device (more flexible, fine-grain DRAM accesses)
whereas the baseline accesses all DRAM devices in a lock-
step manner.

Speedup: The triangles in Figure 3 represent the speedup of
our NDA architecture over the baseline. They show that our
NDA architecture improves the performance of given appli-
cations. The speedup numbers include execution time of both
software and accelerated kernel(s). High speedups originate
from (1) concurrent execution by LWPs; (2) lower memory
access latency for 3D-stacked LWPs atop DRAM devices; (3)
each LWP’s independent accesses of each DRAM device,
which improves the utilization of given bandwidth compared

to the baseline where all DRAM devices must be accessed in
a lock-step manner (cf. Table 5); and (4) higher memory
bandwidth of NDApD×2 and NDApB for LWPs, respec-
tively. Some benchmarks such as MRIG do not take ad-
vantage of our NDA architecture because they exhibits nota-
ble temporal data locality and benefits from the host proces-
sor’s large L2 cache.

NDApD, NDApD×2, and NDApB provide 1.91×, 2.06×,
1.95× higher geometric-mean performance than the baseline,
respectively. We observe that NDApD×2 and NDApB do not
lead to significantly higher performance than NDApD. We
identify two primary reasons. First, the limited computing ca-
pability of LWPs, each of which can use at most two ALUs
per cycle, is insufficient to fully exploit the higher bandwidth
of NDApD×2 and NDApB. In contrast, each CGRA has a
sufficient number of ALUs and thus parallel memory requests
to utilize the given bandwidth of NDApD×2 and NDApB.
Furthermore, NDApB with eight 64-bit independent memory
channels (one channel per bank) for a LWP offers lower per-
formance than NDApD×2 with a single 128-bite memory
channel for a LWP. This is because a LWP is an in-order core
and it cannot efficiently utilize the NDApB providing 8 inde-
pendent 64-bit memory channels while NDApD×2 transfers
more data per one 128-bit wide memory channel (more data
transfer per memory access). That is, NDApD×2 offers
shorter latency per 64B memory request (i.e., cache line size)
than NDApB. Second, LWPs have their own local L1 caches
while CGRAs do not. These local L1 caches diminish the
benefit of higher bandwidth provided by NDApD×2 and
NDApB.

Table 3. Benchmarks used in our evaluation

Name Description # of Kernels Iterative?
Replaced

Exec. Time
Shuffling
Overhead

BP Back propagation [17] 4 Yes 99.9% 1.6%

DISP Disparity map [13] 10 No 99.9% 0.1%

HACC Hardware accelerated cosmology code [15] 2 Yes 99.9% 1.5%

HS Hotspot [17] 2 Yes 99.9% 1.1%

KM K-means clustering [17] 1 Yes 99.9% 0.7%

LBM Lattice-Boltzmann method fluid dynamics [14] 1 Yes 99.9% 1.3%

MRIG Magnetic resonance imaging gridding [14] 1 No 98.5% 0.14%

OCN Ocean movements [16] 16 Yes 81.7% 1.6%

SIFT Scale-invariant feature transform [13] 4 No 92.7% 0.1%

SRAD Speckle reducing anisotropic diffusion [17] 3 Yes 99.9% 0.2%

Table 5: System configuration parameters.

Host Processor

Core

Frequency (2GHz)

4-way out-of-order

ROB/IQ/LQ/SQ (128/36/48/32)

INT/FP ALU (3/2)

Caches

L1I/L1D/L2 Size (32KB/ 32KB/512KB)

L1I/L1D/L2 Associativity (4/4/8)

L1I/L1D/L2 Latency (3/3/16)

LWP (1 core per DRAM die, total of 8 cores)

Core

Frequency (1.2GHz)

2-way in-order

INT/FP (1/1)

Caches

L1I/L1D Size (32KB/ 32KB)

L1I/L1D Associativity (2/4)

L1I/L1D Latency Cycles (2/2)

Main Memory Subsystem

Memory Controller

Page Policy (open)

Scheduling Policy (FR-FCFS)

RD/WR Request Queues (40/40)

DRAM
(DDR3-1600, x8)

tRCD/tCL/tRP (13.75ns/13.75ns/13.75ns)
tRAS/tCCD/tWTR (35ns/5ns/7.5ns)
tWR/ tRTP/ tRTW (15ns/7.5ns/2.5ns)
tRRD/tFAW/ tBURST (40ns/6.25ns/5.0ns)
tRFC/tREFI (300ns/7.8µs)

Table 4: bandwidth utilization.

 Baseline NDApD NDApDx2 NDApB

DISP 15.1% 34.9% 42.6% 37.0%

HACC 6.1% 22.8% 25.1% 23.1%

HS 9.2% 22.5% 24.9% 23.4%

KM 1.6% 12.1% 12.7% 12.0%

LBM 8.7% 44.9% 46.9% 45.3%

MRIG 1.6% 5.8% 5.8% 5.8%

OCN 14.5% 40.1% 41.6% 40.5%

SIFT 3.4% 25.5% 28.6% 27.2%

BP 9.4% 7.2% 7.4% 7.3%

SRAD 8.7% 20.4% 22.2% 20.9%

6

Energy: NDA improves total energy consumption by exploit-
ing energy-efficient computations using LWPs near DRAM
devices and energy-efficient data transfers using TSVs. The
stacked bars in Figure 3 show the energy dissipation of the
baseline and NDA architectures NDApD, NDApD×2, and
NDApB consume 64%, 68%, and 64% lower geometric-
mean energy than the baseline, respectively. The lower en-
ergy consumption is mainly contributed by three factors: (1)
lower data transfer energy through 3D interconnects, (2)
higher energy-efficiency of LWPs than the host processor;
and (3) lower processor leakage and DRAM background en-
ergy due to shorter execution time. On average, the power
consumption of the host processor is 5.1W while that of a
LWP is 0.28W. Lastly, our NDA architecture consumes
considerably lower “DRAM device” energy due to more
efficient DRAM accesses (i.e., higher DRAM page (row
buffer) hit rates) facilitated by each LWP’s independent
access of each DRAM device.

6. Conclusion
We proposed an NDA architecture enabling accelerated data
processing near main memory without changing the host pro-
cessor design. NDA concurrently reduces energy and en-
hances throughput in data movement by stacking LWPs atop
conventional DRAM devices and by off-loading data-inten-
sive operations to the LWPs. By making the ISA of the
stacked LWPs atop DRAM the same as that of the host pro-
cessor, our NDA architecture is designed to be more easily
adopted in both existing and emerging systems. We show that
our NDA architecture improves the performance of a wide
range of evaluated applications by 1.91-2.06× and reduces the
energy consumption by 64-68%.

Acknowledgments
This work was supported in part by grants from NSF (CNS-
1600669 and CNS-1557244) and Samsung Semiconductor.
Nam Sung Kim and Jung Ho Ahn are the co-corresponding

authors. Nam Sung Kim has a financial interest in Samsung
Semiconductor.

References

[1] S. Keckler, et al., "GPUs and the Future of Parallel
Computing," IEEE Micro, vol. 31, no. 5, 2011.

[2] D. Patterson, et al., "A Case for Intelligent RAM," IEEE
Micro, vol. 17, no. 2, 1997.

[3] D. Zhang, et al., "TOP-PIM: Throughput-Oriented
Programmable Processing in Memory," in ACM HPDC,
2014.

[4] Q. Zhu, et al., "A 3D-Stacked Logic-in-Memory Accelerator
for Application-Specific Data Intensive Computing," in IEEE
3DIC, 2013.

[5] A. Farmahini-Farahani, et al., "NDA: Near-DRAM
Acceleration Architecture Leverating Commodity DRAM
Devices and Standard Memory Modules," in IEEE/ACM
HPCA, 2015.

[6] O. Azizi, et al., "Energy Performance Tradeoffs in Processor
Architecture and Circuit Design," in IEEE/ACM ISCA, 2010.

[7] R. Kumar, et al., "Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance," in
IEEE/ACM, 2004.

[8] "big.LITTLE Technology," [Online]. Available:
http://www.arm.com/products/processors/technologies/biglit
tleprocessing.php.

[9] "Intel Xeon Phi Product Family," [Online]. Available:
http://www.intel.com/content/www/us/en/processors/xeon-
phi-detail.html.

[10] J. Kim, et al., "A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O
DRAM with 4x128 I/Os Using TSV Based Stacking," IEEE
J. Solid-State Circuits, vol. 47, no. 1, 2012.

[11] U. Kang, et al., "8Gb 3D DDR3 DRAM Using Through-
Silicon-Via Technology," in IEEE ISSCC, 2009.

[12] K. Sohn, et al., "A 1.2V 30nm 3.2Gb/s/pin 4Gb DDR4
SDRAM with Dual-Error Detection and PVT-tolerant Data-
fetch Scheme," in IEEE ISSCC, 2012.

Figure 3: Comparison of energy and speedup amongst NDApD, NDApDx2, and NDApB, normalized to Baseline.

7

[13] S. Kota, et al., "SD-VBS: The San Diego Vision Benchmark
Suite," in IEEE IISWC, 2009.

[14] "IMPACT: Parboil Benchmarks," [Online]. Available:
http://impact.crhc.illinois.edu.

[15] "CORAL Benchmark Codes," [Online]. Available:
https://asc.llnl.gov/CORAL-benchmarks.

[16] S. Woo, et al., "The SPLASH-2 programs: Characterization
and methodological considerations," in ISCA, 1995.

[17] S. Che, et al., "Rodinia: A Benchmark Suite for
Heterogeneous Computing," in IEEE IISWC, 2009.

[18] [Online]. Available: http://www.hpl.hp.com/research/mcpat.

[19] "DRAMPower," [Online]. Available:
http://www.es.ele.tue.nl/drampower.

Biographies

Hadi Asghari-Moghaddam is a PhD student in the Depart-
ment of Electrical and Computer Engineering at the Univer-
sity of Illinois at Urbana-Champaign. He received the BS de-
gree in electrical engineering in Sharif University of Technol-
ogy and the MS degree in electrical and computer engineer-
ing from the University of Wisconsin-Madison. His research
interests include near-data computing, and energy-efficient
computer architecture. Contact him at asghari2@illinois.edu

Amin Farmahini-Farahani is a member of the technical
staff at Advanced Micro Devices, where he works on research
projects on processing in memory. His research interests in-
clude memory systems, energy-efficient processing, and re-
configurable computing. He has a PhD in electrical and com-
puter engineering from University of Wisconsin-Madison.
Contact him at afarmahi@amd.com.

Katherine Morrow is an Associate Professor in the Depart-
ment of Electrical and Computer Engineering at the Univer-
sity of Wisconsin-Madison. She received her BS, MS, and
PhD from Northwestern University. She is a member of ACM
and IEEE. Her research interests include myriad aspects of
reconfigurable computing, and her teaching interests focus on
the use of technology to improve student learning in under-
graduate computer engineering courses. Contact her at klmor-
row@wisc.edu

Jung Ho Ahn is an associate professor in the Graduate
School of Convergence Science and Technology at Seoul Na-
tional University, where he leads the Scalable Computer Ar-
chitecture Laboratory. He is interested in bridging the gap
between the performance demand of emerging applications
and the performance potential of modern and future mas-
sively parallel systems. Ahn has a PhD in electrical engineer-
ing from Stanford University, and is a senior member of
IEEE. Contact him at gajh@snu.ac.kr.

Nam Sung Kim is an Associate Professor in the Department
of Electrical and Computer Engineering at the University of
Illinois at Urbana–Champaign. His research focuses on de-
vices, circuits, and architectures for energy-efficient compu-
ting. Kim has a PhD in computer science and engineering
from the University of Michigan. He is a senior member of
IEEE. Contact him at nskim@illinois.edu.

