

NDA: Near-DRAM Acceleration Architecture Leveraging
Commodity DRAM Devices and Standard Memory Modules

Amin Farmahini-Farahani†, Jung Ho Ahn‡, Katherine Morrow†, and Nam Sung Kim†

†University of Wisconsin-Madison, ‡Seoul National University
farmahinifar@wisc.edu, gajh@snu.ac.kr, kati@engr.wisc.edu, nskim3@wisc.edu

Abstract
Energy consumed for transferring data across the processor
memory hierarchy constitutes a large fraction of total sys-
tem energy consumption, and this fraction has steadily in-
creased with technology scaling. In this paper, we propose
near-DRAM acceleration (NDA) architectures, which pro-
cess data using accelerators 3D-stacked on DRAM devices
comprising off-chip main memory modules. NDA transfers
most data through high-bandwidth and low-energy 3D in-
terconnects between accelerators and DRAM devices in-
stead of low-bandwidth and high-energy off-chip intercon-
nects between a processor and DRAM devices, substantially
reducing energy consumption and improving performance.
Unlike previous near-memory processing architectures,
NDA is built upon commodity DRAM devices; apart from
inserting through-silicon vias (TSVs) to 3D-interconnect
DRAM devices and accelerators, NDA requires minimal
changes to the commodity DRAM device and standard
memory module architectures. This allows NDA to be more
easily adopted in both existing and emerging systems. Our
experiments demonstrate that, on average, our NDA-based
system consumes 46% (68%) lower (data transfer) energy at
1.67× higher performance than a system that integrates the
same accelerator logic within the processor itself.

1. Introduction
A major source of energy inefficiency in current systems
originates from transferring data between where it is stored
and where it is processed. The processor must transfer data
from off-chip DRAM devices to its on-chip caches and then
into its register file before processing it. Energy consumed
for data transfers is much higher than actual computations.
For example, transferring data from off-chip DRAM devices
through the cache hierarchy to the register file consumes
about two orders of magnitude more energy than performing
a floating-point operation [1]. Furthermore, the fraction of
data transfer energy in the total system energy is projected to
increase with technology scaling [1, 2].

To reduce such data transfer energy, we can decrease
data transfer distance by processing data near or in memory.
This motivates us to re-examine the previous processors-in-
memory (PIM) architectures [3–10] that aimed to improve
performance by integrating processor logic and DRAM on
the same die. Such PIM architectures, however, suffered

from high manufacturing complexity (i.e., low yield), poor
processor logic performance, large DRAM area per bit [11,
12], and design/verification challenges associated with cus-
tom DRAM architectures. Recently, 3D-stacking technology
[13–16] has emerged as an alternative integration technolo-
gy. It can solve some of the critical problems faced by the
previous PIM architectures because it integrates logic and
DRAM layers, each of which is manufactured with dedicat-
ed and separate process technology, with high-bandwidth
and low-energy TSVs.

Leveraging 3D-stacking technology, researchers have
proposed near-DRAM acceleration (NDA) architectures that
integrate accelerator logic and custom 3D DRAM devices to
reap the performance and energy-efficiency benefits of both
accelerators and near-memory processing [17–20]. More
specifically, they focus on either accelerator architecture
where its memory system is separate from the host proces-
sor’s main memory system (similar to a discrete GPU archi-
tecture) or the integration of and interaction between accel-
erators and DRAM using proprietary interfaces.

In this paper, we take commodity 2D DRAM devices
and stack low-power and flexible accelerator logic atop
DRAM. Our NDA architecture provides, in a practical way,
high-bandwidth connections between logic and DRAM for
near-memory processing. Our NDA architecture is seamless-
ly integrated with the host processor’s main memory system
based on standard off-chip memory modules. Specifically,
we make the following contributions:
• We propose an NDA architecture that requires no change

to the host processor design and minimal changes to the
commodity DRAM device’s I/O circuitry while main-
taining the compatibility with the standard DRAM inter-
face and DIMM architecture.

• We explore three NDA microarchitectures that can pro-
vide diverse DRAM-accelerator bandwidth using com-
modity DRAM. We analyze the impact of those microar-
chitectures on DRAM area, timing, and energy in detail.

• We identify various software and hardware challenges in
implementing our NDA architecture (e.g., processor-
accelerator and DRAM-accelerator communications due
to sharing the main memory system with the host proces-
sor) and provide novel cost-effective solutions.

Compared to a computing system integrating the same ac-
celerator logic inside the processor, our NDA architecture
can decrease data transfer energy by 64%-68% and increase
performance by 19%-67%; NDA microarchitectures in-
crease DRAM area by only 0.2%-3.3% with no negative
impact on DRAM timing. Finally, our NDA architecture can
also run legacy applications with practically no performance
penalty while reaping its performance and energy efficiency
benefits for NDA-mapped applications.

The remainder of this paper is organized as follows.
Section 2 provides background information. Section 3 de-
tails our proposed NDA architecture. Section 4 discusses
software considerations for NDA. Section 5 introduces our
evaluation methodology. Section 6 demonstrates simulation
results. Section 7 presents prior work. Finally, Section 8
concludes the paper.

2. Background
In this section, we provide an overview of DRAM and a
description of a type of accelerator that was chosen for use
in the tested NDA architecture.
2.1 DRAM Architecture
To better understand microarchitectures that enable low-
cost, high-bandwidth connections between the accelerator
logic and DRAM die, we first study the internal architecture
of DRAM and its I/O circuitry. Figure 1(center) shows a
DDR3 DRAM device architecture with an ×8 interface (8-
bit data I/O per device) [21, 22]. This device consists of
eight banks, each of which has two sub-banks located above
and below the middle control logic. Each bank operates in-
dependently of other banks, but shares some resources such
as DLLs and I/Os with other banks.

Each sub-bank is an array of memory cells that is divid-
ed into multiple mats. A mat is an array of 512×512 DRAM
cells which has its own local row decoder, local wordlines,
local datalines, bitlines, and bitline sense amplifiers. Each
sub-bank includes a dedicated global row decoder and col-
umn decoder as illustrated in Figure 1(left). The global row
decoder decodes the address and drives a particular global
wordline. The local row decoders then use global wordlines
to drive local wordlines. The bitline sense amplifiers latch
data in each mat. Next, the global column decoder asserts
the column select lines which drive data from the bitline

sense amplifiers onto the global datalines through local data-
lines. The global datalines also have sense amplifiers to de-
crease data transfer latency.

The eight banks are divided into two groups of four left
banks and four right banks. Each bank group shares a 64-bit
inter-bank global I/O (GIO) lines (also known as inter-bank
datalines). The GIO lines in this device are comprised of
upper and lower 32-bit GIO lines. The GIO lines connect
global datalines of each bank to data I/O logic pins shared
by all banks. For each read operation, multiplexers depicted
in Figure 1(right) select 64-bit data from the left or right 64-
bit GIO lines; this data is then serialized before being sent
through the 8-bit data I/O pins. Since the I/O data rate of
DDR3 devices is 8× DRAM core clock frequency, the num-
ber of GIO lines is 8× the number of data I/O pins (i.e., a
prefetch size of 8n, where n is the device I/O width).
2.2 Accelerator Architecture
Various accelerator architectures such as SIMT or SIMD
processors would be compatible with this work. While each
accelerator architecture provides a unique trade-off between
performance/energy-efficiency improvement and program-
mability, we will separate such an impact by also evaluating
a computing system that integrates the same accelerator ar-
chitecture in a processor itself. This allows us to evaluate the
net benefit of processing data near the DRAM regardless of
a particular choice of accelerator architecture. In our exper-
imentation, we assume that accelerators are a type of data-
flow architecture—coarse-grain reconfigurable accelerators
(CGRAs). CGRAs have been shown to provide significant
performance and energy efficiency benefits [23].

A CGRA is typically comprised of a grid of word-sized
functional units (FUs) that perform various arithmetic and

Figure 1. Conventional DRAM organization. A DDR3 device with 8 banks of A to H and ×8 I/O interface (center), internal
architecture of a DRAM bank and a mat (left), and DRAM I/O datapath (right).

 (left) (center) (right)

Figure 2. A CGRA with a grid of 2×2 functional units.

logic operations, which are connected by a configurable
interconnect fabric (Figure 2). CGRAs generally also in-
clude some amount of storage near each FU for intermediate
results. A dataflow graph of a compute-intensive application
kernel, containing nodes (operations) and edges (data com-
munication), is mapped to the CGRA’s FUs and interconnect
either manually or using automated techniques [24]. The
processor triggers CGRA reconfiguration at runtime to im-
plement different kernels at different times, overwriting con-
figuration memory with the new dataflow graph’s configura-
tion data. This allows the CGRA to act as “virtual hardware”
[25]. Configuration data for the various dataflow graphs can
be retained in main memory until it is needed, and is often
cached in configuration memory local to the CGRA.

Exploiting spatial data parallelism in application kernels
and efficiently processing kernel’s dataflow graphs [26–30],
CGRAs, such as those used in DySER [28] and SGMF [29],
considerably improve performance and energy consumption
compared to conventional processors; in particular, CGRAs
can practically eliminate the large energy overheads of
fetching and scheduling instructions in conventional out-of-
order processors. Compared to fine-grain reconfigurable
accelerators (e.g., FPGAs), CGRAs are less flexible, but this
specialization results in higher performance, lower energy
consumption, and much smaller configuration data (shorter
configuration time) [26, 31, 32]. With recent advances in
their compilers and architectures [30, 33–35], CGRAs are
gaining momentum in various applications.

3. NDA Hardware Architecture
The NDA architecture is not dependent on a specific type of
accelerator logic; the accelerators could be CGRAs as dis-
cussed in this paper, or could be SIMD/GPU/FPGA engines
or even low-power cores. This paper focuses on CGRAs due
to their improved performance and energy consumption ver-
sus SIMD and GPU engines for most parallel workloads
[23]. Low energy is important since near-memory architec-
tures have more stringent power/thermal constraints.

In order to facilitate energy-efficient near-memory pro-
cessing, NDA stacks a CGRA on top of each DRAM device.
The CGRA is connected to the internal DRAM I/O lines
using TSVs. A conceptual view of the NDA architecture is
illustrated in Figure 3. Each CGRA is connected only to its
associated DRAM device and operates on data stored in that

device independently of (and in parallel with) the CGRAs
on the other DRAM devices on the DIMM(s).

NDA is architected such that it does not require changes
to the processor or DIMM interface, and only minimal
changes to the underlying DRAM design. Thus, NDA can be
used with existing systems to accelerate NDA-enhanced
applications. Furthermore, this architecture allows existing
un-accelerated applications to run on NDA-equipped plat-
forms without incurring any performance penalty [6].

Conventional processors can offload kernels to CGRAs.
NDA transfers data through high-bandwidth and low-energy
3D interconnects between DRAM devices and their corre-
sponding CGRAs without the processor’s intervention and
processes the data using the CGRAs. This minimizes data
transfers through low-bandwidth and high-energy off-chip
interconnects between the processor and DRAM devices. To
maximize acceleration, the kernel data processed by CGRAs
must be distributed evenly across DRAM devices to balance
the computations across CGRAs.
3.1 Connection between Accelerator and DRAM
We propose three microarchitectures to connect a CGRA
and a DRAM device using TSVs. In all the microarchitec-
tures, we assume the TSV I/O energy is 4 pJ/b, which is
80% lower than the off-chip I/O energy of a DDR3 interface
(Table 1).
Microarchitecture 1 (Connecting TSVs to existing GIO
lines – NDA-1): A CGRA simply reads or writes data
through the TSVs connected to the existing DRAM GIO
lines without changing the underlying DRAM device de-
sign. TSVs are connected to the GIO lines between GIO
multiplexers and data serializer/deserializer (cf. Figure 4).
DRAM devices with ×8 and ×16 interfaces use 64 and 128
TSVs to transfer data between a DRAM device and its
CGRA, respectively. This microarchitecture is similar to one
developed for stacking a wide-I/O DRAM device atop a
processor die [36]. As depicted in Figure 4, the same steer-
ing logic that directs data to/from the left or right set of
banks also directs data through the TSVs to the CGRA.
Hence, this microarchitecture has no area overhead apart
from inserted TSVs (cf. Table 2). A CGRA transferring data
through 3D interconnects is provided the same peak band-
width per device as a processor transferring data through the
off-chip interconnects because both the processor and the
CGRA use the same mechanism to transfer data. However,
the former consumes 51% lower energy per 8-byte
read/write data transfer than the latter (cf. Table 2). The

Figure 3. NDA organization.

Figure 4. Accelerator-DRAM connection by connecting
TSVs to existing GIO lines (Microarchitecture 1).

Upper 32-bit GIO

A B C D

Upper 32-bit GIO

A B C D

E F G H

E F G H

64 TSVs
(Shared by all banks)

Lower 32-bit GIO Lower 32-bit GIO

DRAM Device Layer

Mux DeMux

Upper 32-bit GIO Upper 32-bit GIO

32 32

CGRA-side memory controller (MC) manages data transfers
between the two dies (cf. Section 3.2).
Microarchitecture 2 (Connecting TSVs to doubled GIO
lines – NDA-2): Similar to Microarchitecture 1, we connect
TSVs to GIO lines except that the number of GIO lines is
doubled. By doubling the number of GIO lines and accord-
ingly the number of TSVs, we double the CGRA-DRAM
bandwidth (cf. Figure 5). This change requires doubling the
number of global datalines, global dataline sense amplifiers,
and local datalines, but halves the number of column select
lines in each bank. The number of bitline sense amplifiers is
not affected. Our SPICE simulation shows that this microar-
chitecture slightly increases the bank area and the GIO lines
area compared to Microarchitecture 1 (cf. Table 2). Howev-
er, DRAM timing parameters can remain unchanged by ad-
justing the repeater interval of GIO lines, as elaborated in
[22]. Note that the read/write energy efficiency of this mi-
croarchitecture is better than that of Microarchitecture 1
since the overhead of sending address/command is amor-
tized over a larger number of bits per data transfer transac-
tion. To transfer data from/to a DRAM device, the CGRA
uses all GIO lines while the processor uses only a half of
GIO lines to reduce energy consumption of the long GIO
lines. This can be supported by controlling data multiplexing
at the boundary of global datalines and GIO lines (Figure 5).
Microarchitecture 3 (Connecting TSVs to banks’ global
datalines – NDA-3): In both Microarchitectures 1 and 2, the
TSV connection is shared by all the banks in a DRAM de-
vice. However, each bank can be independently controlled,
which can be exploited by a CGRA. In Microarchitecture 3,
we instead provide each bank with a separate TSV connec-
tion to the CGRA. Thus, the CGRA can access data from
each independently-addressed bank. This provides the op-
portunity to exploit the benefit of bank-level parallelism by
accessing data from multiple banks concurrently, eliminat-
ing the limitation of sharing a TSV connection among all
banks in a DRAM device. In this microarchitecture, we con-
nect TSVs to global datalines of each bank, forming eight
independently accessed TSV connections (Figure 6). This
microarchitecture increases the CGRA-DRAM bandwidth
substantially with only small overhead associated with TSVs
(cf. Table 2). The CGRA access latency and energy decrease
as well due to directly accessing data from bank’s global
datalines and bypassing GIO lines. The CGRA-side MC
directs DRAM requests and responses between the CGRA
and its corresponding bank.

TSV overhead: Current 3D interconnect technology allows
a TSV pitch size of 40-50µm for 3D DRAM stacking [36,
37], which provides enough room for PHY, test, and ESD
protection [14]. To reduce TSV area overhead, finer grain
TSVs with a pitch size of 5µm can be used for signals [15]
with redundant TSVs to increase the yield [38]. ~280 TSVs
are required for a 128-bit data connection between a CGRA
and a DRAM device to account for the overheads of ad-
dress, command, power, and ground [36]. This incurs an
area overhead of only ~0.243 mm2 by using coarse-grain
TSVs for power/ground and fine-grain TSVs with 4:2 re-
dundancy [38] for signals. Since the typical area of DDR3
and DDR4 devices ranges from 30 mm2 to 100 mm2 [39,
40], the area overhead of TSVs is negligible.
Summary: Table 2 lists the peak bandwidth of a DDR3-
1600 device using off-chip I/O pads vs. using TSVs. The
off-chip I/O bandwidth depends on the I/O clock frequency
and I/O bit-width (with two transfers per I/O clock). The
TSV bandwidth depends on the core clock frequency, the
microarchitecture used to connect a CGRA with its DRAM
device, and the number of TSVs. In Microarchitecture 1, a
TSV-based connection provides the same peak bandwidth
per DRAM device as the off-chip I/O bus connection. In
Microarchitecture 2, the increase in the number of GIO lines
doubles the TSV peak bandwidth, while off-chip I/O band-
width remains unchanged. Microarchitecture 3 provides
eight times the peak bandwidth of Microarchitecture 1 by
accessing banks independently. Note that the processor and
CGRA cannot access DRAM cells concurrently in any mi-
croarchitecture (cf. Section 3.2).

In all three microarchitectures, the underlying DRAM
architecture remains intact, making the proposed microar-
chitectures low-cost and compatible with the industry stand-
ard DDR3 devices. To quantify the overheads and savings,
we modeled the internal DRAM components using SPICE
simulations in a 3-metal layer 28nm DRAM process and 6F2

Figure 5. Accelerator-DRAM connection by connecting TSVs to doubled GIO lines (Microarchitecture 2).

Figure 6. Accelerator-DRAM connection by connecting
TSVs to global datalines of banks (Microarchitecture 3).

DRAM cells. Table 2 indicates that our microarchitectures
have a limited impact on the DRAM area. DRAM access
latency (either from the processor or CGRA) does not in-
crease either; the CGRA-DRAM access latency even de-
creases by 6ns in Microarchitecture 3. Table 2 also indicates
that CGRAs consume less energy to transfer the same num-
ber of bits than processors. This is because the CGRAs ob-
viate the need of serializing data and also the TSVs used for
the CGRAs have better signal integrity and lower load ca-
pacitance than the pads, bumps, and PCBs used to connect a
processor and DRAM packages. The wider datapath struc-
tures consume even less energy per bit because the overhead
of sending and decoding a command/address is amortized
over a larger number of bits per data transfer transaction.
The impact of enabling connection to CGRA on normal ac-
cess energy to the processor is minimal because GIO energy,
which is affected by the growth in DRAM area, is much
smaller than inter-package I/O energy. Table 2 summarizes
this energy overhead of the three microarchitectures on
normal DRAM accesses.
3.2 Memory Access by Accelerators
Memory controller: As shown in Figure 7, each CGRA
includes an MC to issue memory requests to its DRAM de-
vice. Through TSVs, the CGRA-side MC sends com-
mand/address bits to the DRAM device to indicate the type
of operation and the address involved (which in turn deter-
mines the bank, row, and column within the DRAM device).
For all the CGRA-DRAM connections proposed in Sec-
tion 3.1, the CGRA-side MC manages data transfers be-
tween the CGRA and DRAM device in compliance with
DRAM timing constraints such as tFAW and tRRD [41].

The CGRA-side MC does not require complex request or-
dering and arbitration logic that exists in the processor-side
MC. Moreover, many kernels include little or no data-
dependent control flow and shun “pointer chasing.” Thus,
the memory request order can usually be optimized during
kernel development. The processor-side MC is always re-
sponsible for providing DRAM clocks and refreshing the
DRAM.
DRAM ownership transition between a processor and
accelerators: When a kernel is launched, the processor-side
MC hands over control of a DRAM rank to CGRA-side
MCs. The processor-side MC stops sending commands (e.g.,
ACT and CAS) to the DRAM rank with active CGRAs. This
allows avoiding frequent concurrent accesses by both the
processor and the CGRAs (Section 3.3). When the owner-
ship of a DRAM rank switches, its banks are in the pre-
charged state. Thus, bank conflicts are avoided and the page
policy (open or close) is managed by the owner. When pro-
cessor cores (including ones that are not using CGRAs in a
multi-programmed environment) need to access the DRAM
rank with active CGRAs, CGRA operations are suspended
(by writing to a DRAM mode register) and the CGRA-side
MCs close (precharge) DRAM pages. At the same time, the
processor-side MC assumes that all pages in that rank are
currently closed when it takes back the control of the
DRAM rank. Then, the processor-side MC can activate the
required page and access data.

In a multi-programmed environment, processor cores
might access the DRAM rank with active CGRAs. One way
to alleviate the problem of such concurrent access is to parti-
tion main memory space into two groups: addresses mapped
to conventional ranks, and addresses mapped to CGRA-
enabled ranks. Memory allocation policies [42] can allocate
application memory to a proper DRAM rank. Memory re-
quests from applications that do not utilize CGRAs will not
thus interfere with memory requests of active CGRAs. Simi-
larly, the same ownership transition mechanism can be used
when the processor-side MC must refresh the rank with ac-
tive CGRAs. Although periodic refresh operations from the
processor-side MC are unavoidable [43], refresh intervals
(tREFI) are long enough (e.g., 7.8µs in DDR3) to allow Figure 7. Accelerator stacked on top of a DRAM device.

Accele
rator

DRAM
Clock

Command
Generator

Address
Decoder

FSM

Data

Address

Command

WR Queue

RD Queue

Accelerator Layer DRAM Layer
Memory Controller

Table 1. Area, timing, and energy parameters of an 8Gb DDR3-1600 ×8 DRAM device. ×8 = off-chip data I/O bit-width is 8.

Device Row buffer
size

Peak
bandwidth Core Freq. I/O Freq. Number of

banks Area Access latency
(tCL)

RD or WR energy
without I/O

Off-chip I/O
energy

DDR3-1600 ×8 1KB 12.8 Gbps 200 MHz 800 MHz 8 80 mm2 13.75 ns 13 pJ/b [73] 20 pJ/b [22]

Table 2. Summary of bandwidth, area, timing, and energy of different microarchitectures to connect Accelerators and
DRAM devices. Numbers are relative to DDR3-1600 ×8 parameters given in Table 1. S/A = Sense Amplifiers.

Connection between Accel-
erator and DRAM

Off-chip
data I/O
bit-width

Number
of data
TSVs

Peak bandwidth (Gbps)
Area change

Accelerator
timing

change

CPU
timing

change

Accelerator
RD energy

(without I/O)

CPU RD
energy

(without I/O)
Through
I/O pins

Through TSV
pins

NDA-1 (Connecting TSVs to
existing GIO lines)

8 64 12.8 12.8 0.2% (TSV) - - -51% (-7%) -
16 128 25.6 25.6 4.3% (S/A, pins, TSV) - - -64% (-39%) -12% (-31%)

NDA-2 (Connecting TSVs to
doubled GIO lines)

8 128 12.8 25.6 3.3% (S/A, TSV) - - -64% (-39%) ~0% (+0.3%)
16 256 25.6 51.2 7.6% (S/A, pins, TSV) - - -70% (-53%) -12% (-30%)

NDA-3 (Connecting TSVs to
global datalines)

8 512 12.8 102.4 1.2% (TSV) Decrease
tCL by 6ns

- -59% (-28%) ~0% (+0.1%)
16 1024 25.6 204.8 6.4% (S/A, pins, TSV) - -72% (-59%) -12% (-30%)

CGRAs to make considerable progress within them. CGRAs
are aware of refresh intervals and can suspend their normal
operations right before the refresh command from the pro-
cessor-side MC. Recent techniques such as adaptive refresh
can be used to further mitigate the refresh overhead [43].
Furthermore, on-die temperature sensors [21] can be provi-
sioned to enable adjusting temperature-aware refresh inter-
vals.
Memory addressing: CGRAs in NDA use physical
memory addresses, and usually operate on big data struc-
tures (e.g., large images and matrices) that are brought into
the memory by the processor at startup in large chunks. Big-
data workloads rarely benefit from virtual memory features
such as page swapping [44]. Therefore, to ensure the
CGRAs read/write data from/into contiguous regions of
physical memory, we adopt memory segmentations without
paging for the region of memory address space accessed by
CGRAs [44]. This segmentation approach maps contiguous
regions of virtual memory to contiguous regions of physical
memory which eliminates virtual memory overheads due to
TLB misses for the large data structures accessed by
CGRAs. The conventional page-based virtual memory is
used for the rest of the address space. In NDA, the proces-
sor-side MC provides CGRAs with the physical starting
address of data through system calls. Before invoking
CGRAs, the processor must pin the memory regions (seg-
ments) accessed by CGRAs through the OS.
3.3 Processor-Accelerator Communication
The processor uses DRAM memory-mapped registers to
communicate with CGRAs through the processor-DIMM
interface. The processor-side MC transfers parameters such
as data starting addresses, kernel configuration starting ad-
dresses, and kernel ID and triggers kernel execu-
tion/reconfiguration on CGRAs by writing to the kernel reg-
isters (Figure 8). This does not require changes to the pro-
cessor-DIMM interface as existing MCs support accessing
programmable mode registers in conventional DRAM. Once
CGRAs start their execution, they can access the parameters
from those register locations.

CGRAs can notify the processor of their execution sta-
tus by writing to the status registers in their local DRAM
devices. The processor periodically polls these memory-
mapped status registers to check for kernel completion or
exceptions (like errno). CGRA exceptions can be imprecise
and terminate a kernel [45]. The status register read by the

processor does not intervene in DRAM accesses by the
CGRA since the status register which is supplied onto the
off-chip bus uses a separate datapath in DRAM (Figure 8).
Based on the kernel running on CGRAs and the data size of
the kernel, the processor can accurately estimate the execu-
tion time of a kernel, thereby polling status when the kernel
execution is about to finish or has just finished.

4. Software Considerations
4.1 Target Applications
NDA targets big-data applications with high parallelism and
localized memory accesses which are traditionally deployed
on Map-Reduce frameworks [46]. High parallelism enables
employing CGRAs concurrently and localized memory ac-
cesses reduce inter-CGRA communication. Exploiting
CGRAs for energy-efficient, accelerated data processing and
high-bandwidth and low-energy 3D interconnects, NDA can
process a large amount of data efficiently and quickly in the
era of big data where huge data sets are being processed and
analyzed constantly.
4.2 Data Arrangement for Accelerators
The conventional DIMM architecture interleaves each 64-bit
data block amongst DRAM devices, each of which stores 8
and 16 bits for ×8 and ×16 DRAM devices, respectively.
However, NDA requires that all data used by each CGRA be
located within the DRAM device to which the CGRA is
attached. Maintaining compatibility with the standard
DIMM architecture and interface requires rearranging data
both to (i) partition them across CGRAs for parallel pro-
cessing and to (ii) ensure that all sub-words of a given data
word are written to the same DRAM device.

Figure 9(top-left) shows an example of a 4×4 array of
32-bit words (A–R), where the four quadrants of the array
should be distributed among the four ×16 DRAM devices in
a DIMM as indicated. Here, each 32-bit data word consists
of 16-bit upper and lower subwords, labeled “1” and “0”.
Figure 9(top-right) shows how this array is typically distrib-
uted across ×16 DRAM devices, separating the upper and

Figure 8. Access to mode, status, and kernel registers.

Figure 9. Data arrangement across devices for a 4×4 array
of 32-bit words (A – R). Original data arrangement (top) and
shuffled arrangement for NDA acceleration (bottom).

lower halves of each 32-bit word, and failing to group the
data for each quadrant into a single device. Figure 9(bottom)
shows a “shuffled” arrangement of the same data that results
in the desired partitioning for NDA processing when it is
written to the DRAM through the standard interface.

The processor shuffles CGRA input data during initiali-
zation. The once-per-execution overhead of input data shuf-
fling is amortized over long-running applications that pro-
cess a significant amount of data. Shuffling is not required
for data that is both produced and consumed by CGRAs. For
many applications, CGRA processing also reduces the local
data within the DRAM device before it is further analyzed
and reduced by the processor. This is similar to Map-Reduce
programming model in which CGRAs perform map and
local reduce operations and the processor performs global
reduce and controls execution (Figure 10). If the CGRA
result data is needed by the processor, the processor must
“unshuffle” it before using it.
4.3 Programming for NDA
In NDA, Similar to SIMD/GPU engines, the processor is
responsible for running the OS and irregular control-flow
codes, and CGRAs execute application kernels.
Programming model: Figure 10 depicts the programming
model for applications mapped to NDA. To enable concur-
rent CGRA computations with partitioned data, the pro-
cessing is split into smaller computations. Data processing
in many data-intensive applications in domains such as
high-energy physics, biology, scientific computing, and ge-
ology can be split this way [47]. Some boundary data may
need to be duplicated to reduce/eliminate inter-CGRA com-
munication. The processor can orchestrate data sharing be-
tween CGRAs by reading/writing data from/to DRAM de-
vices. After CGRA computations are completed, CGRAs
output data is processed and merged by the processor.
Mapping programs to NDA: We analyze applications to
find kernels with long execution time. We then divide the
application into software (run by the processor) and hard-
ware kernels (run by the CGRAs). The chosen kernels are
converted to dataflow graphs, which are mapped to CGRAs.
The software code is then modified to replace kernel compu-

tation with appropriate instructions to transfer parameters
and control between the processor and CGRAs.
Program execution flow in NDA: After partitioning and
shuffling data, the processor configures CGRAs to run the
required kernels. The processor then sends kernel parame-
ters to CGRAs and triggers execution. Once all processing
using the current kernel is complete, the processor can read
the CGRA output data and unshuffle it.

4.4 Data Coherence and Memory Consistency
There is no hardware mechanism to enforce data coherence
between the processor and CGRAs. Since CGRAs have no
access to the processor on-chip cache hierarchy, the data
produced/modified by the processor and consumed by
CGRAs should not be left in the processor’s on-chip caches.
To avoid inconsistencies between the processor’s cache and
main memory, the region of memory containing the data set
consumed by CGRAs (i.e., CGRAs’ shuffled input data) is
defined as an un-cacheable region of memory. The processor
does not usually consume data from this region of memory
in the near future, if ever. Thus, it is not necessary to main-
tain cache coherence for this region of memory.

The processor accesses data in this region using non-
temporal instructions (e.g., MOVNTQ, MOVNTPS, and
MASKMOVQ in x86) that bypass the cache hierarchy. CGRAs
usually operate on large data sets such as multi-dimensional
matrices. The processor initializes/loads those data sets in
memory using non-temporal instructions which are then
consumed by CGRAs. Other data sets (including the data
sets produced by CGRAs and consumed by the processor)
can use hardware cache coherence as usual. Note that for the
region of memory that is produced by CGRAs, the pro-
grammer should make sure no stale data is stored in the
cache hierarchy before the processor accesses it. The pro-
cessor and CGRAs do not operate on the same data set sim-
ultaneously. As a result, no changes to memory consistency
are needed.

5. Evaluation Methodology
5.1 Benchmarks
Table 3 shows 11 different benchmarks from the San Diego
Vision [48], Parboil [49], CORAL [50], SPLASH-2 [51],
and Rodinia [52] benchmark suites that we use for evalua-
tion. Table 3 also recaps the shuffling overhead of CGRAs’
input data relative to the execution time of the benchmarks
running on the baseline architecture in Section 5.3. The
shuffling overhead numbers for iterative benchmarks are
reported for 20 iterations. For the iterative benchmarks, as
the number of iterations increases, the shuffling overhead of
input data is amortized over more computation.
5.2 Architectural Components
CGRAs: FUs in our CGRAs are unified dual-mode inte-
ger/floating point units, meaning that they can operate in
either integer mode or floating point mode. Most FUs can
perform addition, subtraction, and a few logical operations,
while a few FUs can perform complex operations such as

Figure 10. NDA programming model.

multiplication and division. Table 4 summarizes the details
of a CGRA with 64 FUs used in this paper. The types of FUs
and the number of each type present the required operations
of our benchmarks. Numerical methods approximate rarely
used operations, such as square root.

For evaluating area and power consumption of FUs and
switches in our CGRAs, we developed their Verilog models
using Synopsys DesignWare building block IPs and synthe-
sized them using the Synopsys design compiler 2013 and
TSMC 40 nm low-power standard-cell library. We opti-
mized them for a clock frequency of 800 MHz. Table 4 indi-
cates that the area of a 64-FU CGRA is ~0.832 mm2.
CGRAs consume very little dynamic power because of their
simple datapath and low frequency. In our benchmarks, the
dynamic power of switches and FUs in a CGRA is only 3-17
mW, translating to a power density of 4-21 mW/mm2. Also,
the power gird of existing modern DRAM dies would fur-
ther reduce CGRA temperature variations by acting as a heat
spreader. Thus, CGRAs have minimal thermal impact on a
DRAM device. Based on our estimates using McPAT [53],
the area of a CGRA-side MC is ~0.21 mm2.
Processor: We use a four-way OoO processor with a 16-
stage execution pipeline. Table 5 shows the key architecture
parameters of the processor and its caches.
Memory: We use DDR3-1600 DRAM devices with data I/O
sizes of either 8 bits (×8) or 16 bits (×16), which are com-
mon for DDR3. In ×8 and ×16 interfaces, there are eight and
four memory devices in a given rank, respectively, to form a
64-bit bus between the memory and MC. In general, DDR3
devices have a burst-length of 8, transferring 64 bytes of
data in each memory transfer. Table 6 contains detailed tim-
ing parameters of DRAM subsystem used in our evaluation.
I/O: We denote I/O energy as a function of the number of
I/O transactions and assume off-chip and TSV I/O energy is
20 pJ/b and 4 pJ/b, respectively.

Table 5. Key processor architecture parameters

Pipeline width 4 I/D L1 caches 32KB 4-way
ROB/IQ/LQ/SQ entries 128/36/48/32 I/D L1 ports 1/2
Integer and FP ALUs Nehalem-like L2 cache 512KB 8-way
Int & FP physical Regs 128 and 128 Cache line size 64 bytes
Branch predictor Tournament L1/L2 latency 3/16 cycles
BTB entries 2048 L1/L2 MSHRs 10/16

Table 6. DRAM subsystem parameters

DDR3-1600-11-11-11-28
tRCD=13.75ns, tCL=13.75ns, tRP=13.75ns, tRAS=35.0ns, tCCD=5.0ns,
tWTR=7.5ns, tWR=15.0ns, tRTP=7.5ns, tRTW=2.5ns, tRRD=6.25ns,
tFAW=40.0ns, tBURST=5.0ns, tRFC=300.0ns, tREFI=7.8µs
Device row buffer size 1KB/2KB for ×8/×16

Memory Management
Page interleaving, Open page policy, 40/40-entry read/write request
queues per MC, FR-FCFS scheduler

5.3 Evaluated Architectures
We compare the performance of NDA against a diverse set
of architectures, summarized in Table 7. In the “Baseline”
architecture, we use a conventional four-way processor
(Table 5) running at 2GHz and DDR3-1600 memory subsys-
tem (Table 6) without any CGRAs. In “Base 4×Para,” we
assume that the performance of the evaluated applications
perfectly scales with the number of cores whereas in reality,
parallel application performance is strongly dependent on
how well the applications are parallelized. In
“Base+CGRAs,” CGRAs are integrated with the processor
[30, 54–56]; CGRAs transfer data through the off-chip in-
terconnects between the processor and DRAM devices. In
NDA, four CGRAs are stacked atop each ×8 DRAM device
to provide the same total number of CGRAs as
“Base+CGRAs.” In NDA, we conservatively assume that it
takes 1.25ns to latch (to minimize skew) and transfer data
between a DRAM device and a CGRA over TSVs.
5.4 Simulation Platform
We extended the gem5 simulator [57] with the ARM ISA to
support CGRA execution, 3D-stacked memory, and non-
temporal memory accesses. We model the functional and
timing execution of the processor, cache levels, CGRAs,
DRAM devices, and interfaces among them. We extended
the gem5 MC to support CGRA-DRAM 3D connections.

We use McPAT-based power models [53] to calculate
power consumption of processor core, caches, and other on-
chip units. We have developed an in-house power estimator
to evaluate power consumption of CGRAs based on infor-
mation given in Table 4. We assume both the processor and
CGRAs are implemented in 40 nm ASIC technology. We
use DRAMPower [58] for evaluating power consumption of
DRAM devices and their I/O interface. We have modified

Table 4. Design parameters of a
CGRA with 64 32-bit FUs

Unit Latency
(Cycles) Count Area

(µm2)
Energy
per Op.

INT ALU 1
40

3589 2.2 pJ
FP ALU 5 4762 7.1 pJ
INT MUL 2

20
6507 13.1 pJ

FP MUL 4 6565 11.3 pJ
INT DIV 8

4
10596 30.1 pJ

FP DIV 9 15484 27.7 pJ
Switch - 81 4236 1.11 pJ

 Table 3. Benchmarks used in our evaluation

Name Description # of
Kernels Iterative? Replaced

Exec. Time
Shuffling
Overhead

BP Back propagation [52] 4 Yes 99.9% 1.6%
DISP Disparity map [48] 10 No 99.9% 0.1%
HACC Hardware accelerated cosmology code [50] 2 Yes 99.9% 1.5%

HS Hotspot [52] 2 Yes 99.9% 1.1%
KM K-means clustering [52] 1 Yes 99.9% 0.7%

LBM Lattice-Boltzmann method fluid dynamics [49] 1 Yes 99.9% 1.3%
MRIG Magnetic resonance imaging gridding [49] 1 No 98.5% 0.14%
OCN Ocean movements [51] 16 Yes 81.7% 1.6%
SIFT Scale-invariant feature transform [48] 4 No 92.7% 0.1%

SRAD Speckle reducing anisotropic diffusion [52] 3 Yes 99.9% 0.2%
TRCK Feature tracking [48] 8 No 79.3% 2.0%

DRAMPower to support TSV-based connection and have
integrated it with gem5.

6. Results
In this section, we evaluate the performance and energy-
efficiency of NDA. Unless otherwise indicated, we use ×8
DRAM devices and CGRAs with 64 FUs at 800 MHz. We
consider dynamic and leakage energy of the processor,
DRAM devices, and CGRAs. While CGRAs are operating,
the processor runs at 1/16th of its operating frequency (re-
flected in our results) and can periodically check the status
of CGRAs by reading CGRA status registers through the
processor-memory interface after a certain delay (e.g.,
10000 idle loop iterations).
Data transfer energy: NDA improves data transfer energy
by performing computation near off-chip DRAM devices.
Figure 11 plots the energy consumed to transfer data through
the memory I/O interface (off-chip and/or TSV interconnect)
and through the register file, cache hierarchy, LSQ, and bus-
es (on-chip transfer) for the baseline and NDA architectures.
NDA can greatly reduce data transfer energy for several
reasons. First, most of these benchmarks have large working
sets with low temporal locality that do not fit within proces-
sor caches. Second, for applications that have temporal lo-
cality, CGRA’s internal registers allow local storage of data.
Finally, NDA uses low-energy TSVs consuming 5× less
energy than off-chip interconnects. Overall, NDA-1, -2, and

-3 reduce average data transfer energy by 64%, 66%, and
68% over “Base+CGRAs,” respectively. NDA also reduces
average data transfer energy by 89% over “Base.”

 Note that “Base 4×Para” decreases on-chip cache
(leakage) energy by 75% compared to “Base” due to re-
duced application execution time. “Base+CGRAs” also de-
creases average on-chip data transfer energy by 79% over
“Base,” because CGRA’s internal registers can reduce ac-
cesses to the processor cache hierarchy [59].
Total energy: NDA improves total energy consumption by
exploiting energy-efficient CGRAs near DRAM devices.
Figure 12 shows the total energy dissipation breakdown of
baseline and NDA. We categorize the energy dissipation into
four components. “Execution and Scheduling” comprises
energy dissipation of (i) fetching and scheduling instructions
in the processor and (ii) executing instructions in both the
processor and CGRAs. “On-chip Transfer” represents ener-
gy dissipation of the register file, cache hierarchy, LSQ, and
buses. “Off-chip DRAM I/O and TSVs” represents energy
dissipation of the memory I/O interface. Finally, “DRAM
Devices” represents energy dissipations in DRAM devices.

On average, NDA-1, -2, and -3 consume 34%, 46%,
and 39% lower total energy than “Base+CGRAs.” NDA also
consumes 84% and 78% lower energy than “Base” and
“Base 4×Para,” respectively. Due to the absence of the over-
head of fetching and scheduling instructions in the processor
for kernel executions, NDA using CGRAs processes data

Table 7. Summary of different architectures evaluated in this paper

Abbreviation # CGRAs Description
Base - 4-way OoO processor at 2GHz (Table 5) and DDR3-1600 ×8 memory (Table 6)

Base 4×Para - Same as the baseline with four threads running concurrently with hypothetical ideal thread parallelism
Base+CGRAs 32 Same as the baseline with 32 on-chip CGRAs co-located with the processor

NDA-1 32 Same as the baseline with 4 CGRAs stacked atop each ×8 DRAM device using Microarchitecture 1
NDA-2 32 Same as the baseline with 4 CGRAs stacked atop each ×8 DRAM device using Microarchitecture 2
NDA-3 32 Same as the baseline with 4 CGRAs stacked atop each ×8 DRAM device using Microarchitecture 3

Figure 11. On- and off-chip data movement energy normalized to that of “Base+CGRAs.”

3.
9

23
.8

18
.7 3.
7

7.
4

6.
1

4.
1

0
0.5

1
1.5

2
2.5

3
3.5

4

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

B
as

el
in

e
B

as
e

4×
Pa

ra
B

as
e+

C
G

R
A

s
N

D
A

-1
N

D
A

-2
N

D
A

-3

BP DISP HACC HS KM LBM MRIG OCN SIFT SRAD TRCK

N
or

m
al

iz
ed

 E
ne

rg
y

On-chip
Transfer

Off-chip
DRAM I/O
and TSVs

Figure 12. Combined processor, DRAM, and CGRA energy consumption normalized to that of “Base+CGRAs.”

9.
1

7.
1

3.
1

0
1
2
3
4
5
6

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

B
as

el
in

e
B

as
e

4×
P

ar
a

B
as

e+
C

G
R

A
s

N
D

A
-1

N
D

A
-2

N
D

A
-3

BP DISP HACC HS KM LBM MRIG OCN SIFT SRAD TRCK

N
or

m
al

iz
ed

 E
ne

rg
y Execution

and
Scheduling
On-chip
Transfer

Off-chip
DRAM I/O
and TSVs
DRAM
Devices

much more energy efficiently than processors. Moreover,
NDA substantially reduces data transfers through cache hi-
erarchy, register file, and bus. NDA also reduces leakage and
background energy of the processor and DRAM devices,
respectively, because CGRAs speed up application execu-
tion. Finally, NDA considerably decreases DRAM device
energy because CGRAs generally have more well-defined
and regular memory access patterns compared to processors
[60, 61]. This leads to higher DRAM page (row buffer) hit
rate and thus lower DRAM activate energy. Only for MRIG
and SIFT, NDA incurrs more DRAM accesses (i.e., more
DRAM access and activation energy) than “Base+CGRAs.”
Higher DRAM energy in MRIG is due to its non-uniform
data distribution and gather memory operations and higher
DRAM energy in SIFT is due to its temporal data accesses
that cannot be fully filtered out by CGRA’s internal
registers. For such applications, the processor’s on-chip
cache hierarchy can reduce DRAM accesses.
Speedup Comparison: NDA also improves the perfor-
mance of target applications by using parallel and accelerat-
ed processing. Figure 13 compares the performance of NDA
with baseline architectures. The speedup numbers include
execution time of both software and accelerated kernel(s).
On average, NDA-2 and NDA-3 provide 14.1× and 4.0×
higher performance than “Base” and “Base 4×Para.” High
speedups originate from (i) concurrent execution of CGRAs,
(ii) data-level parallelism exploited by CGRAs, and (iii)
slightly lower memory access latency, and 2× and 8× higher
memory bandwidth for NDA-2 and -3, respectively.

NDA-1 provides the same aggregated memory band-
width as “Base” and “Base+CGRAs” for CGRAs. However,
NDA-1 provides 10.1× higher average speedups than
“Base” because its CGRAs exploit data parallelism. NDA-1
provides 19% higher average speedup than “Base+CGRAs”
although “Base+CGRAs” also uses CGRAs to exploit the
same data parallelism as NDA. The reason is that parallel
execution of CGRAs integrated with the processor causes
more memory contentions, leading to higher DRAM bank

conflicts and lower page hit rate. In NDA, on the other hand,
CGRAs’ DRAM accesses are local to their DRAM devices.
Finally, NDA also benefits from transferring data through
3D-interconnects with 2ns lower memory access latency
(and 2× and 8× higher bandwidth for NDA-2 and -3) and
bypassing data transfers across the processor cache hierar-
chy. NDA-2 and NDA-3 increase average performance by
67% and 66% over “Base+CGRAs,” respectively, due to
higher DRAM bandwidth. Among the tested benchmarks,
MRIG is the only one that does not take advantage of NDA,
where NDA-2 performs 31% worse than “Base+CGRA”
because MRIG exhibits notable temporal data locality and
benefits from the processor on-chip cache hierarchy.

Figure 13 indicates that NDA-3 performs almost the
same as NDA-2 although its CGRA-DRAM peak bandwidth
is 4× higher. To achieve peak bandwidth in NDA-3, all 8
DRAM banks should be utilized concurrently, while NDA-2
achieves its peak bandwidth with streaming accesses. More-
over, memory transactions in NDA-3 are half of the width of
those in NDA-2, resulting in more transactions in NDA-3
for wide memory accesses. We expect that optimizing
memory access patterns of the benchmarks to exploit bank-
level parallelism could improve NDA-3 performance.
Sensitivity to CGRA-DRAM connection type: Having
different memory bandwidth characteristics, our three NDA
microarchitectures lead to different performance results.
Figure 14 compares the performance improvement of NDA-
2 and -3 over NDA-1 with one CGRA stacked atop a
DRAM device. NDA-1 provides the lowest bandwidth
among our three microarchitectures. To evaluate the benefit
of higher CGRA-DRAM bandwidth, we vary the number of
CGRAs stacked atop each DRAM device (x axis). Figure 14
includes only accelerated kernel execution since CGRA-
DRAM connection type has no impact on the processor per-
formance. Figure 14 indicates that the performance of some
benchmarks such as KM scales well with the number of
CGRAs while that of other benchmarks such as HS caps out
with more CGRAs due to memory bandwidth limitations.

1

2

4

8

16

1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816 1 2 4 816

Sp
ee

du
p

(lo
g 2

) NDA-1 NDA-2 NDA-3

BP DISP HACC HS KM LBM MRIG OCN SIFT SRAD TRCK GMean
Figure 14. Performance of different NDA microarchitectures to connect CGRAs and DRAMs with varying the number of
stacked CGRAs (x axis) normalized to the performance of NDA-1 with one CGRA stacked atop a DRAM.

Figure 13. Performance comparison of different architectures normalized to “Base+CGRAs.”

0
0.5

1
1.5

2
2.5

3

BP DISP HACC HS KM LBM MRIG OCN SIFT SRAD TRCK GMean

Sp
ee

du
p Baseline Base 4×Para NDA-1 NDA-2 NDA-3

NDA-2 and NDA-3 achieve 74% and 89% higher aver-
age performance than NDA-1, respectively (with 16 CGRAs
per DRAM device); the evaluated benchmarks can exploit
the higher bandwidth of NDA-2 because they mostly tend to
access data in streaming fashion. NDA-3 provides the high-
est bandwidth and thus most benchmarks can achieve their
highest performance when the number of CGRAs is 16.
Note that increasing the number of CGRAs to 16 slightly
decreases the performance of HS, LBM, and OCN. This is
because more CGRAs for these benchmarks increase
memory contentions (i.e., DRAM bank conflicts). We expect
that optimizing the benchmarks to exploit bank-level paral-
lelism can lead to significant performance improvements of
NDA-3.
Sensitivity to CGRA computing capability: We evaluate
the impact of the number of FUs and frequency of CGRAs
on the accelerated kernel execution time. Figure 15 com-
pares the performance of NDA-1 using CGRAs with various
computing capability. For this evaluation, note that one
CGRA is stacked atop each DRAM device. For data-
intensive benchmarks such as DISP and TRCK, the compu-
ting capability of CGRAs has small impact on performance,
while for compute-intensive benchmarks such as HACC,
LBM, and SRAD, the more CGRA’s computing capability
can significantly improve performance. Some benchmarks
such as KM benefit more from higher frequency CGRAs,
while benchmarks such as SRAD and SIFT benefit more
from more FUs. On average, a 64-FU CGRA at 800MHz
achieves 82% higher performance than a 32-FU CGRA at
400MHz on our benchmarks.

NDA×8 versus ×16: As explained in Section 3.1, our pro-
posed NDA architecture is also applicable to DRAM ×16
devices. There are eight and four DRAM ×8 and DRAM
×16 devices in a given rank. Thus, to have the same compu-
ting capability, NDA×16 requires twice the number of
CGRAs per DRAM device compared to NDA×8. Our exper-
iments demonstrate that NDA×16 performance is on average
1.7% higher than NDA×8 for our evaluated benchmarks.
The row-buffer size of each DRAM×16 device is twice that
in DRAM×8 devices. As a result, NDA×16 has higher per-
formance for streaming benchmarks (e.g., 23% and 9% bet-
ter performance for DISP and TRCK on NDA×16 versus
NDA×8). Conversely, concurrent execution of more CGRAs
per DRAM device increases bank conflict rate. As a result,
HS and SRAD perform 44% and 22% better on NDA×8
versus NDA×16.

7. Related Work
In this section, we briefly discuss related work on reconfigu-
rable accelerated processing and processing in memory.
Spatial reconfigurable accelerators. A large body of work
has investigated reconfigurable hardware for exploiting spa-
tial parallelism [62]. Spatial accelerators improve the per-
formance and energy efficiency of kernels in domains such
as multimedia, signal processing, cryptography, big data
analysis, and pattern matching. The reconfigurable hardware
can be used as either tightly-integrated units in processor’s
datapath, coprocessors, or off-chip accelerators. Some pro-
posed architectures employ a grid of coarse-grain functional
units [30, 54–56], while others use finer grain units or
FPGA-like hardware [27, 63–65]. Although our work is not
limited to specific reconfigurable hardware, we have used a
tiled array of coarse-grain reconfigurable functional units
because they tend to be more efficient in energy and faster
compared to FPGAs [26, 31, 32].
Processors in memory (PIM). There have been numerous
efforts to integrate processor logic and DRAM onto a single
chip to enable processing in memory [3–9]. PIM systems
exploit lower access latency and higher aggregate bandwidth
to enable high-performance local data processing. The Com-
putational RAM architecture [5] unifies memory and logic
by connecting SIMD processing elements to DRAM sense
amplifiers through a wide bus. Similarly, Intelligent RAM
[9] combines a vector processor and DRAM memory on a
chip to enable fast data-parallel operations through a wide
memory interface. The FlexRAM chip [6], which replaces a
conventional memory chip, comprises a processor and a
large number of simple compute engines that are interleaved
with DRAM blocks. Smart Memories [7] is a tiled architec-
ture composed of many processing units, caches, and
DRAM blocks in a same chip with reconfigurable function-
ality. In DIVA [4], PIM chips are composed of one or more
tiles where each contains a processor and DRAM cells. The
Active Pages model [8] integrates many small pages of data
implemented on DRAM and their associated functional units
implemented on reconfigurable fabric. The recent TCAM
[66] and AC-DIMM [67] proposals enable in-memory asso-
ciative computing using PCM and STT-MRAM technolo-
gies.

Memory and logic technologies in PIM systems have
different characteristics. Logic is optimized for performance,
whereas DRAM is optimized for capacity with fewer metal
layers to reduce manufacturing cost and improve yield. PIM

0.5
1

1.5
2

2.5
3

3.5

BP DISP HACC HS KM LBM MRIG OCN SIFT SRAD TRCK GMean

Sp
ee

du
p

32 FUs at 400MHz
64 FUs at 400MHz
32 FUs at 800MHz
64 FUs at 800MHz

Figure 15. Performance of the NDA-1 architecture by varying the number of functional units and frequency of CGRAs
(normalized to the performance of NDA-1 using 32-FU CGRAs at 400MHz). One CGRA is stacked atop each ×8 DRAM.

systems suffer from high manufacturing costs and low yield
because of integrating two different technologies [11, 12].
Moreover, they overhaul the DRAM architecture to effi-
ciently integrate processing units in the memory devices,
making their design and verification challenging and time-
consuming. In contrast, our proposal is completely achieva-
ble using the present-day 3D-stacking technology and does
not require significant modifications to DRAMs or their
interface to the processor.
Processing in memory controller (MC). Processing in MC
has been proposed to reduce data movement through the
cache hierarchy by adding specialized hardware to the MC.
Ahn et al. [68] dedicate hardware to enable parallel execu-
tion of a specific class of atomic operations in the MC for
data-parallel architectures. Wei et al. [69] augment an MC
with a co-processor for vector, streaming, and bit manipula-
tion operations. Fang et al. [70] propose an active memory
controller (AMC) that performs scalar and stream opera-
tions. In general, MCs augmented with hardware engines
still suffer from high off-chip data energy and limited ap-
plicability due to supporting a limited class of applications.

The Hybrid Memory Cube (HMC) [71] and 3D-
stacking memory and processors [46, 72] promise high
memory bandwidth and new opportunities for local data
processing. Recently, there have been proposals to bond
DRAM layers with application-specific accelerators [18]
and GPGPU execution units [17]. Even if our proposal can
be exercised in an HMC-like structure or 3D-stacked
memory by embodying the processing units in the logic lay-
er, we take a different approach by processing data near
conventional and commodity DRAM devices to make impact
in the near future.

8. Conclusions
We have proposed a new architecture, NDA, to enable ac-
celerated data processing near main memory. NDA concur-
rently reduces energy and enhances throughput in data
movement by stacking coarse-grain reconfigurable accelera-
tors on top of conventional DRAM devices and by off-
loading data-intensive operations to the accelerators. Apart
from inserting through-silicon vias to 3D-interconnect
DRAM devices and CGRAs, NDA requires minimal chang-
es to the underlying DRAM design and no change to proces-
sor design, enabling NDA to be more easily adopted in ex-
isting and emerging systems for energy reduction and per-
formance improvement. The simulation results show that
NDA significantly improves the performance of a wide
range of evaluated applications (3.2-60.6×) and reduces their
total energy consumption (63-96%).

 Acknowledgments
We thank our anonymous reviewers and our shepherd, Ba-
bak Falsafi, for their insightful comments. We also thank
Young Hoon Son for his help on the DRAM modeling and
SPICE simulations. This work was supported in part by the
NSF (CCF-0953603, CNS-1217102, and CNS-0952425),
and DARPA (HR0011-12-2-0019). Jung Ho Ahn was sup-

ported by the Basic Science Research Program through the
NRF funded by the MSIP (2012R1A1B4003447). Nam
Sung Kim has a financial interest in AMD and Samsung
Electronics.

 References

[1] S. W. Keckler et al., “GPUs and the Future of Parallel Computing,”

IEEE Micro, vol. 31, no. 5, pp. 7–17, Sep. 2011.
[2] S. Borkar, “Role of Interconnects in the Future of Computing,” J.

Light. Technol., vol. 31, no. 24, pp. 3927–3933, Dec. 2013.
[3] M. F. Deering et al., “FBRAM: a new form of memory optimized for

3D graphics,” in Computer Graphics and Interactive Techniques,
1994, pp. 167–174.

[4] J. Draper et al., “The architecture of the DIVA processing-in-memory
chip,” in Intl. Conf. on Supercomputing, 2002, pp. 14–25.

[5] D. G. Elliott et al., “Computational Ram: A memory-SIMD hybrid
and its application To DSP,” in IEEE Custom Integrated Circuits
Conference, 1992, pp. 30.6.1–30.6.4.

[6] D. Keen et al., “FlexRAM: Toward an advanced intelligent memory
system,” in Intl. Conf. on Computer Design: VLSI in Computers and
Processors, 1999, pp. 192–201.

[7] K. Mai et al., “Smart Memories: a modular reconfigurable
architecture,” in Intl. Symp. on Computer Architecture, 2000, pp.
161–171.

[8] M. Oskin et al., “Active Pages: A computation model for intelligent
memory,” in Intl. Symp. on Computer Architecture, 1998, pp. 192–
203.

[9] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol.
17, no. 2, pp. 34–44, 1997.

[10] G. H. Loh et al., “A processing in memory taxonomy and a case for
studying fixed-function PIM,” in Workshop on Near-Data
Processing, 2013.

[11] D. Patterson et al., “Intelligent RAM (IRAM): the industrial setting,
applications, and architectures,” in Intl. Conf. on Computer Design,
1997, pp. 2–7.

[12] M. Chu et al., “High-level programming model abstractions for
processing in memory,” in Workshop on Near-Data Processing, 2013.

[13] R. G. Dreslinski et al., “Centip3De: A 64-Core, 3D Stacked Near-
Threshold System,” IEEE Micro, vol. 33, no. 2, pp. 8–16, Mar. 2013.

[14] B. Black, “Die stacking is happening (keynote),” in Intl. Symp. on
Microarchitecture, 2013.

[15] D. H. Kim et al., “3D-MAPS: 3D massively parallel processor with
stacked memory,” in IEEE Intl. Solid-State Circuits Conference,
2012, pp. 188–190.

[16] D. H. Woo et al., “POD: A 3D-Integrated Broad-Purpose
Acceleration Layer,” IEEE Micro, vol. 28, no. 4, pp. 28–40, Jul. 2008.

[17] D. P. Zhang et al., “TOP-PIM: throughput-oriented programmable
processing in memory,” in Intl. Symp. on High Performance Parallel
and Distributed Computing, 2014.

[18] Q. Zhu et al., “A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in IEEE Intl. 3D
Systems Integration Conf., 2013, pp. 1–7.

[19] R. Sampson et al., “Sonic Millip3De: A massively parallel 3D-
stacked accelerator for 3D ultrasound,” in 2013 IEEE 19th
International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 318–329.

[20] A. Farmahini-Farahani et al., “DRAMA: An Architecture for
Accelerated Processing near Memory,” IEEE Comput. Archit. Lett.,
2014.

[21] C. Park et al., “A 512-Mb DDR3 SDRAM Prototype With CIO
Minimization and Self-Calibration Techniques,” IEEE J. Solid-State
Circuits, vol. 41, no. 4, pp. 831–838, Apr. 2006.

[22] Y. H. Son et al., “Reducing memory access latency with asymmetric
DRAM bank organizations,” in Intl. Symp. on Computer Architecture,
2013, vol. 41, no. 3, pp. 380–391.

[23] V. Govindaraju et al., “DySER: Unifying Functionality and
Parallelism Specialization for Energy-Efficient Computing,” IEEE
Micro, vol. 32, no. 5, pp. 38–51, Sep. 2012.

[24] T. Nowatzki et al., “A general constraint-centric scheduling
framework for spatial architectures,” in Conf. on Programming
Language Design and Implementation, 2013, pp. 495–506.

[25] K. Compton and S. Hauck, “Reconfigurable computing: a survey of
systems and software,” ACM Comput. Surv., vol. 34, no. 2, pp. 171–
210, Jun. 2002.

[26] Y. Huang et al., “Elastic CGRAs,” in Intl. Symp. on Field
Programmable Gate Arrays, 2013, pp. 171–180.

[27] M. Mishra et al., “Tartan: evaluating spatial computation for whole
program execution,” in Architectural Support for Programming
Languages and Operating Systems, 2006, pp. 163–174.

[28] V. Govindaraju et al., “Dynamically specialized datapaths for energy
efficient computing,” in High Performance Computer Architecture,
2011, pp. 503–514.

[29] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,” in Intl. Symp. on Computer
Architecture, 2014, pp. 205–216.

[30] A. Parashar et al., “Triggered instructions: a control paradigm for
spatially-programmed architectures,” in Intl. Symp. on Computer
Architecture, 2013, pp. 142–153.

[31] J. L. Tripp et al., “A Survey of Multi-Core Coarse-Grained
Reconfigurable Arrays for Embedded Applications,” 2008.

[32] R. Hartenstein, “Coarse grain reconfigurable architecture,” in Asia
South Pacific Design Automation Conference, 2001, pp. 564–570.

[33] C. Kim et al., “ULP-SRP: Ultra low power Samsung Reconfigurable
Processor for biomedical applications,” in Intl. Conf. on Field-
Programmable Technology, 2012, pp. 329–334.

[34] W.-J. Lee et al., “A scalable GPU architecture based on dynamically
reconfigurable embedded processor,” in High Performance Graphics,
Posters, 2011.

[35] N. R. Miniskar et al., “Function inlining and loop unrolling for loop
acceleration in reconfigurable processors,” in Intl. Conf. Compilers,
architectures and synthesis for embedded systems, 2012, pp. 101–110.

[36] J.-S. Kim et al., “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM
With 4x128 I/Os Using TSV Based Stacking,” IEEE J. Solid-State
Circuits, vol. 47, no. 1, pp. 107–116, Jan. 2012.

[37] T. Sekiguchi et al., “1-Tbyte/s 1-Gbit DRAM Architecture Using 3-D
Interconnect for High-Throughput Computing,” IEEE J. Solid-State
Circuits, vol. 46, no. 4, pp. 828–837, Apr. 2011.

[38] Uksong Kang et al., “8Gb 3D DDR3 DRAM using through-silicon-
via technology,” in 2009 IEEE International Solid-State Circuits
Conference - Digest of Technical Papers, 2009, pp. 130–131,131a.

[39] K.-N. Lim et al., “A 1.2V 23nm 6F2 4Gb DDR3 SDRAM with local-
bitline sense amplifier, hybrid LIO sense amplifier and dummy-less
array architecture,” in IEEE Intl. Solid-State Circuits Conference,
2012, pp. 42–44.

[40] K. Sohn et al., “A 1.2V 30nm 3.2Gb/s/pin 4Gb DDR4 SDRAM with
dual-error detection and PVT-tolerant data-fetch scheme,” in IEEE
Intl. Solid-State Circuits Conference, 2012, pp. 38–40.

[41] M. Shevgoor et al., “Quantifying the relationship between the power
delivery network and architectural policies in a 3D-stacked memory
device,” in Intl. Symp. on Microarchitecture, 2013, pp. 198–209.

[42] A. R. Lebeck et al., “Power aware page allocation,” in Intl. Conf. on
Architectural Support for programming Languages and Operating
Systems, 2000, vol. 28, no. 5, pp. 105–116.

[43] J. Mukundan et al., “Understanding and mitigating refresh overheads
in high-density DDR4 DRAM systems,” in Intl. Symp. on Computer
Architecture, 2013, vol. 41, no. 3, pp. 48–59.

[44] A. Basu et al., “Efficient virtual memory for big memory servers,” in
Intl. Symp. on Computer Architecture, 2013, pp. 237–248.

[45] D. Y. Deng et al., “Flexible and Efficient Instruction-Grained Run-
Time Monitoring Using On-Chip Reconfigurable Fabric,” in Intl.
Symp. on Microarchitecture, 2010, pp. 137–148.

[46] S. Pugsley et al., “Comparing Different Implementations of Near Data
Computing with In-Memory MapReduce Workloads,” IEEE Micro,
vol. 34, no. 4, pp. 44–52, 2014.

[47] J. Ekanayake et al., “MapReduce for Data Intensive Scientific
Analyses,” in IEEE Intl. Conf. on eScience, 2008, pp. 277–284.

[48] S. K. Venkata et al., “SD-VBS: The San Diego Vision Benchmark
Suite,” in International Symposium on Workload Characterization,
2009, pp. 55–64.

[49] J. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” 2012.

[50] “CORAL benchmark codes,” 2014. [Online]. Available:
https://asc.llnl.gov/CORAL-benchmarks/.

[51] S. C. Woo et al., “The SPLASH-2 programs: characterization and
methodological considerations,” in Intl. Symp. on Computer
Architecture, 1995, pp. 24–36.

[52] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Intl. Symp. on Workload Characterization, 2009, pp.
44–54.

[53] S. Li et al., “The McPAT Framework for Multicore and Manycore
Architectures,” ACM Trans. Archit. Code Optim., vol. 10, no. 1, pp.
1–29, Apr. 2013.

[54] B. Mei et al., “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix,” in Field
Programmable Logic and Application, 2003, pp. 61–70.

[55] H. Schmit et al., “PipeRench: A virtualized programmable datapath in
0.18 micron technology,” in Proceedings of the IEEE 2002 Custom
Integrated Circuits Conference (Cat. No.02CH37285), 2002, pp. 63–
66.

[56] M. A. Watkins and D. H. Albonesi, “ReMAP: A Reconfigurable
Heterogeneous Multicore Architecture,” in Intl. Symp. on
Microarchitecture, 2010, pp. 497–508.

[57] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Arch.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[58] K. Chandrasekar et al., “DRAMPower: Open-source DRAM power &
energy estimation tool.” [Online]. Available:
http://www.drampower.info.

[59] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” in Intl. Symp. on Computer Architecture, 2010, pp.
37–47.

[60] R. Hou et al., “Efficient data streaming with on-chip accelerators:
Opportunities and challenges,” in High Performance Computer
Architecture, 2011, pp. 312–320.

[61] A. Farmahini-Farahani et al., “Energy-Efficient Reconfigurable Cache
Architectures for Accelerator-Enabled Embedded Systems,” in Intl.
Symp. on Performance Analysis of Systems and Software, 2014, pp.
211–220.

[62] R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective,” in Design, Automation and Test in Europe, 2001, pp.
642–649.

[63] Z. A. Ye et al., “CHIMAERA: a high-performance architecture with a
tightly-coupled reconfigurable functional unit,” in Intl. Symp. on
Computer Architecture, 2000, pp. 225–235.

[64] J. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a
reconfigurable coprocessor,” in Field-Programmable Custom
Computing Machines, 1997, pp. 12–21.

[65] T. Callahan et al., “The Garp architecture and C compiler,” Computer
(Long. Beach. Calif)., vol. 33, no. 4, pp. 62–69, 2000.

[66] Q. Guo et al., “A resistive TCAM accelerator for data-intensive
computing,” in Intl. Symp. on Microarchitecture, 2011, pp. 339–350.

[67] Q. Guo et al., “AC-DIMM: associative computing with STT-
MRAM,” in Intl. Symp. on Computer Architecture, 2013, vol. 41, no.
3, pp. 189–200.

[68] J. Ahn et al., “Scatter-Add in Data Parallel Architectures,” in Intl.
Symp. on High-Performance Computer Architecture, 2005, pp. 132–
142.

[69] R. B. T. Mingliang Wei, Marc Snir, Josep Torrellas, “A near-memory
processor for vector, streaming and bit manipulation workloads,” in
UIUC Tech. Report, 2005.

[70] Z. Fang et al., “Active memory controller,” J. Supercomput., vol. 62,
no. 1, pp. 510–549, Jan. 2012.

[71] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips 23,
2011.

[72] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core
Processors,” in Intl. Symp. on Computer Architecture, 2008, pp. 453–
464.

[73] S. O et al., “Row-Buffer Decoupling: A Case for Low-Latency
DRAM Microarchitecture,” in Intl. Symp. on Computer Architecture,
2014.

