
Analytical Study on Bandwidth Efficiency of
Heterogeneous Memory Systems

Amin Farmahini-Farahani, David Roberts, Nuwan Jayasena

AMD Research, Advanced Micro Devices, Inc.

{afarmahi, david.roberts, nuwan.jayasena}@amd.com

Abstract

Heterogeneous memory systems integrate different memory

technologies to balance design requirements such as band-

width, capacity, and cost. Performance of these systems de-

pends heavily on memory hierarchy organization, memory at-

tributes, and application characteristics. In this paper, we pre-

sent analytical bandwidth models for a range of heterogene-

ous memory systems composed of DRAM and non-volatile

memory (NVM). Our models enable exploring heterogeneous

memory systems with different organizations and attributes.

Using the models, we study the bandwidth efficiency of het-

erogeneous memory systems to provide insights into the

bandwidth bottlenecks of these systems under different appli-

cation characteristics. Our analytical results highlight the im-

portance of NVM read-write bandwidth asymmetry and

DRAM-NVM bandwidth asymmetry in bandwidth effi-

ciency. Specifically, in flat non-uniform memory access

(NUMA) systems, the read bandwidth is maximized when a

certain portion of bandwidth is delivered by DRAM and that

portion depends on multiple factors including DRAM and

NVM bandwidth attributes and application bandwidth char-

acteristics. In DRAM-cache-based systems, when the hit rate

is low, the impact of the DRAM cache organization on the

read bandwidth is minimal. However, at higher hit rates and

NVM bandwidths, the impact of the cache organization on

sustained read bandwidth becomes pronounced.

CCS Concepts

•Computer systems organization → Heterogeneous (hybrid) sys-

tems; •Hardware → Memory and dense storage; •Hardware →

Non-volatile memory; •Software and its engineering → Main

memory;

1. Introduction

The emergence of a variety of new memory technologies is

likely to fundamentally alter memory system design. On the

one hand, new DRAM interface standards based on technolo-

gies such as high-speed serial links and 3D die-stacking (e.g.,

Hybrid Memory Cube (HMC) [15, 8, 2], JEDEC High Band-

width Memory [1]) promise greatly enhanced memory band-

widths even as mainstream DDR-based DRAM continues to

improve performance. On the other hand, new emerging non-

volatile memory (NVM) technologies such as Resistive RAM

and Phase Change Memory (PCM) promise greater cell den-

sities that can provide increased memory capacity albeit typi-

cally at lower performance levels than DRAM-based technol-

ogies. Heterogeneous memory systems incorporating both

DRAM and NVM hold the promise of higher bandwidth as

well as higher capacity than is possible with either one of

these classes of memories alone.

An example of a heterogeneous memory system is a flat-ad-

dress non-uniform memory access (NUMA) memory system

where high-performance DRAM and high-capacity NVM are

exposed as regions of the same physical address space. The

overall bandwidth of such a system depends heavily on effi-

cient data placement and migration within the memories by

software to keep frequently-accessed data in DRAM. Another

example of a heterogeneous memory system is one where

DRAM is used as a hardware-managed cache for NVM. The

bandwidth efficiency of such a system is highly dependent on

factors such as cache hit rate and tag storage design. Further,

the performance of both these examples depends heavily on

the NVM bandwidth.

In this paper, we describe a variety of heterogeneous memory

system organizations consisting of high-bandwidth memory

with limited capacity and low-bandwidth memory with higher

capacity and develop comprehensive analytical models to

compare their bandwidth efficiencies and utilizations under

different configurations.

The rest of the paper is organized as follows. Section 2 intro-

duces a bandwidth model for homogeneous memory systems.

Section 3 describes our bandwidth models for a variety of het-

erogeneous memory systems and studies their bandwidth ef-

ficiencies. Section 4 discusses our analytical bandwidth re-

sults. Section 5 presents the latency breakdown of memory

accesses in heterogeneous memory systems. Section 6 pro-

vides an overview of related work. Finally, Section 7 con-

cludes the paper.

2. Bandwidth Model for Homogeneous

Memory Systems

Memory bandwidth often dictates the execution time of

memory-intensive applications. In this section, we study the

bandwidth of memory-intensive applications in homogeneous

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
MEMSYS '16, October 03-06, 2016, Alexandria, VA, USA

© 2016 ACM. ISBN 978-1-4503-4305-3/16/10…$15.00

DOI: http://dx.doi.org/10.1145/2989081.2989089

http://dx.doi.org/10.1145/2989081.2989089

memory systems, and we then extend our study to heteroge-

neous memories in subsequent sections.

Figure 1 shows a logical view of a homogeneous memory sys-

tem. The execution time (performance) of a memory-band-

width-bound applications can be formulated as the following:

Execution time = Data_Volume / BW (1)

where Data_Volume is the total main memory data volume

that is accessed during the application’s execution and BW is

the sustained bandwidth delivered by the main memory.

The main memory bandwidth can further be refined by sepa-

rating memory read bandwidth from memory write band-

width. In current volatile (e.g., DDR DRAM) and non-volatile

(e.g., PCM) memory technologies, read and write bandwidth

is shared both locally within a memory bank and externally

over a single memory I/O interface, meaning that at any given

time, either a read or a write can be performed. However,

DRAM has symmetric read and write bandwidths, while

NVM has asymmetric bandwidth characteristics where its

write bandwidth is typically smaller than its read bandwidth.

In our study, we represent applications by their memory read

and write bandwidth requirements as reflected by the traffic

between the processor’s on-chip last-level cache (LLC) and

main memory. The amount of read and write bandwidth that

an application consumes is a function of application charac-

teristics (e.g., arithmetic intensity, memory access pattern) as

well as compute-unit characteristics (e.g., number of cores

and functional units, operating frequency, cache hierarchy

characteristics). To refine our bandwidth model, we define

some application bandwidth parameters in Table 1.

App_RdBW, App_WrBW, and App_R2W are defined as prop-

erties of the application and are independent of the physical

properties of memory. Although App_RdBW and

App_WrBW are application bandwidth parameters (with a

unit of bytes/sec), they roughly resemble “program balance”

between LLC and memory in the balance model [5] or the

inverse of “operational intensity” in the roofline model [21].

Table 2 defines some memory parameters for the steady-state

bandwidth potential of off-chip memory. The maximum sus-

tained memory bandwidth (Mem_RdBW and Mem_WrBW) is

lower than the maximum theoretical bandwidth of memory.

For CPUs, the sustained bandwidth is typically 65-75% of the

maximum theoretical memory bandwidth [18]. For example,

a DDR3-1600 rank has a maximum theoretical bandwidth of

12.8GB/s which delivers a sustained bandwidth of about

9GB/s. For GPUs, the sustained bandwidth can be as high as

90-95% of the maximum theoretical memory bandwidth.

Mem_RdBW and Mem_WrBW roughly resemble the “ma-

chine balance” between LLC and memory [5].

For clarity later in the paper, we define the maximum sus-

tained read bandwidth of DRAM and NVM as DRAM_RdBW

and NVM_RdBW and the maximum sustained write band-

width of DRAM and NVM as DRAM_WrBW and

NVM_WrBW. These parameters are properties of memory and

are independent of application characteristics. In DRAM,

DRAM_RdBW and DRAM_WrBW are equal as DRAM has

symmetric read and write bandwidths, while in NVM

NVM_RdBW is usually higher than NVN_WrBW [22, 23, 16]

and it could be as high as 20X. Hence, the memory read to

write bandwidth ratio for DRAM (DRAM_R2W) has a value

of 1, while NVM_R2W usually has a value greater than 1.

Using the parameters defined above, we find the bandwidth

delivered by main memory (RdBW_Delivered and

WrBW_Delivered) in a homogeneous memory system for an

application (shown in Figure 1). The relationship between de-

livered read and write bandwidths can be expressed as:

RdBW_Delivered / WrBW_Delivered = App_R2W (4)

Figure 1. Logical view of a homogeneous memory system.

Processor Memory

RdBW

WrBW

Table 1. Application parameters

App_RdBW Application read bandwidth demand after the LLC in bytes per second

App_WrBW Application write bandwidth demand after the LLC in bytes per second

App_R2W Read bandwidth to write bandwidth ratio of the application (App_RdBW / App_WrBW)

Table 2. Memory parameters

Mem_RdBW (DRAM_RdBW and NVM_RdBW) Maximum sustained read bandwidth of off-chip memory in the absence of write traffic

Mem_WrBW (DRAM_WrBW and NVM_WrBW) Maximum sustained write bandwidth of off-chip memory in the absence of read traffic

Mem_R2W (DRAM_R2W and NVM_R2W)
Read bandwidth to write bandwidth ratio of off-chip memory (Mem_RdBW /
Mem_WrBW). Typically, DRAM_R2W=1 and NVM_R2W > 1.

Table 3. Delivered read and write bandwidths in homogenous memory systems

𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = 𝑚𝑖𝑛 (𝐴𝑝𝑝_𝑅𝑑𝐵𝑊,
𝑀𝑒𝑚_𝑅𝑑𝐵𝑊

1 +
𝑀𝑒𝑚_𝑅2𝑊
𝐴𝑝𝑝_𝑅2𝑊

) (2)

𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

= 𝑚𝑖𝑛 (𝐴𝑝𝑝_𝑊𝑟𝐵𝑊,
𝑀𝑒𝑚_𝑅𝑑𝐵𝑊

𝑀𝑒𝑚_𝑅2𝑊 + 𝐴𝑝𝑝_𝑅2𝑊
)

(3)

For memory-bandwidth-bound applications, the delivered

read bandwidth is degraded from the maximum sustainable

because writes consume some of that bandwidth. The fraction

consumed by writes is inversely proportional to the memory

system’s read to write bandwidth ratio (Mem_R2W). Eq. (5)

expresses this relationship.

Mem_RdBW = RdBW_Delivered + WrBW_Deliv-
ered × Mem_R2W (5)

For memory-bandwidth-bound applications, the bandwidth

delivered by memory is independent of actual application

bandwidth demand. For these applications, only the read

bandwidth to write bandwidth ratio of the application is

needed to calculate the delivered bandwidth.

On the other hand, for non-memory-bandwidth-bound appli-

cations, the application bandwidth demand (App_RdBW and

App_WrBW) dictates the delivered bandwidth. Taking Equa-

tions (4)-(5) into account, we can derive expressions for

RdBW_Delivered and WrBW_Delivered in

Table 3.

In applications with multiple phases, the bandwidth delivered

by memory varies as the application bandwidth demand could

be different in each phase. Thus, the delivered bandwidth

should be calculated separately for each phase.

3. Bandwidth Model for Heterogeneous

Memory Systems

In this section, we model and evaluate the memory bandwidth

efficiency of different heterogeneous memory systems com-

posed of a high-bandwidth memory and a low-bandwidth

memory. Figure 2 shows the physical structure of a

heterogeneous memory system. While the memory

controllers in this figure are shown implemented on the

processor chip (as is the case with conventional DDR DRAM

modules), alternate organizations where the controllers are

integrated within the memory package (as in HMC) are also

possible. There could also exist direct connections between

the low-bandwidth memory and high-bandwidth memory (as

in networks of memory nodes [19, 11]).

Heterogeneous memory systems can typically be categorized

as flat NUMA and cache-based memory systems. In the flat

NUMA memory system, data placement in the high-band-

width memory and low-bandwidth memory is orchestrated by

software. In the cache-based memory system, the high-band-

width memory operates as a hardware-managed cache for the

low-bandwidth memory. The system shown in Figure 2 can

be organized as either a flat NUMA system as shown in Figure

3, or a cache-based system as shown in Figure 5.

For simplicity of description, we assume the high-bandwidth

memory is made up of DRAM (and refer to it as DRAM) and

the low-bandwidth memory is made up of NVM (and refer to

it as NVM). However, our models can be used for other het-

erogeneous memory systems such as those composed of an

on-package DRAM and off-package DRAM. We assume that

the applications running on the processor exhibit high

memory-level parallelism with a uniform distribution of ac-

cesses over the entire physical address space. We also assume

the processor can support a large number of in-flight memory

requests. The goal of our bandwidth models is to quantify the

relative bandwidth efficiency of heterogeneous memory sys-

tems compared to a homogeneous memory system.

In the cache-based memory systems that we evaluate in this

paper, DRAM cache is used as a write-back cache for NVM

as this is the most common approach for DRAM caches and

reduces write bandwidth. In these systems, DRAM cachelines

are allocated on read misses and writebacks from the proces-

sor’s LLC that miss in the cache. On a writeback to the

DRAM cache, a full cacheline is written to DRAM from the

processor’s LLC and no data is read from NVM. This saves

memory bandwidth for write-intensive workloads. Modified

DRAM cachelines are written to NVM on cacheline replace-

ment.

In order to capture the characteristics of heterogeneous

memory systems, we define another parameter termed

Dram_HitRate. For flat NUMA systems, it indicates what

fraction of memory bandwidth is supplied by DRAM. For

DRAM-cache-based systems, this parameter indicates what

fraction of memory requests is filtered by the DRAM cache.

We use the same hit rate for both reads and writes to make our

models simpler. However, our models can be extended to

have separate hit rates for reads and writes.

We also define another parameter termed Dram_Dirty which

indicates the probability of a DRAM cacheline being dirty in

systems with hardware-managed DRAM caches. To derive

the Dram_Dirty expression, we make the observation that a

clean line becomes dirty by a write (either hit or miss) and a

dirty line becomes clean by eviction due to a read miss. In

steady state, the ratio of dirty lines to total lines in the cache

is constant. Eq. (6) defines Dram_Dirty. The derivation of this

expression is described by Bolotin et al. [4].

𝐷𝑟𝑎𝑚_𝐷𝑖𝑟𝑡𝑦 =
1

1 + 𝐴𝑝𝑝_𝑅2𝑊 × (1 − 𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)

(6)

3.1 Flat-address NUMA

In our first study of heterogeneous memory systems, we eval-

uate the bandwidth of flat NUMA memory systems. Figure 3

shows the logical view of a flat NUMA system. Using nota-

tions introduced in Figure 3, we first develop expressions for

the bandwidth variables RDRAM, RNVM, WDRAM, and WNVM as

functions of DRAM hit rate and application bandwidth de-

mand. RDRAM and WDRAM define application read and write

bandwidth demands on DRAM and RNVM and WNVM define

Figure 2. Physical structure of a heterogeneous memory sys-

tem.

High-Bandwidth
Memory

Low-Bandwidth
Memory

LLC

Memory
Controller

Memory
ControllerP

ro
ce

ss
o

r

application bandwidth demands on NVM. In this model, we

do not consider the bandwidth overhead of data movement

between DRAM and NVM. Note that Dram_HitRate indi-

cates the fraction of memory bandwidth supplied by DRAM

(high-bandwidth memory).

RDRAM = App_RdBW × Dram_HitRate (7)

RNVM = App_RdBW × (1 - Dram_HitRate) (8)

WDRAM = App_WrBW × Dram_HitRate (9)

WNVM = App_WrBW × (1 - Dram_HitRate) (10)

In this memory organization, the bandwidth delivered by

DRAM can be limited by the bandwidth delivered by NVM

as NVM might not be able to supply enough bandwidth for

the portion of data that is placed in NVM. Similarly, the band-

width delivered by NVM can be limited by the bandwidth de-

livered by DRAM as DRAM might not be able to supply

enough bandwidth for the data placed in DRAM. Hence, we

can find the bandwidth delivered by DRAM and NVM by de-

riving from Equations (2) and (3) and factoring in the interde-

pendency between the DRAM bandwidth and NVM band-

width.

Table 4 summarizes a set of equations for the bandwidth de-

livered by DRAM and NVM in this organization. To find the

delivered read and write bandwidths, we calculate the maxi-

mum numbers for DRAM_RdBW_Delivered and

NVM_RdBW_Delivered by solving Equations (11)-(12) and

maximum numbers for DRAM_WrBW_Delivered and

NVM_WrBW_Delivered by solving Equations (13)-(14).

3.1.1 Optimal Data Placement

In this organization, data placement in DRAM and NVM de-

termines the delivered bandwidths. An optimal data place-

ment enables maximum utilization of both DRAM and NVM

bandwidths concurrently. The total (both DRAM and NVM)

read bandwidth is directly a function of the ratio of the deliv-

ered DRAM bandwidth and delivered NVM bandwidth. In

other words, the total read bandwidth is maximized when a

certain portion of memory bandwidth is supplied by DRAM

and the rest by NVM. Eq. (15) defines the portion of memory

bandwidth that should be supplied by DRAM in order to max-

imize the total read bandwidth. This equation considers asym-

metry in NVM bandwidth as well as the application read to

write ratio.

𝑂𝑝𝑡𝑖𝑚𝑎𝑙_𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒 =
1

1+
𝑁𝑉𝑀_𝑅𝑑𝐵𝑊(1+𝐴𝑝𝑝_𝑅2𝑊)

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊(𝐴𝑝𝑝_𝑅2𝑊+𝑁𝑉𝑀_𝑅2𝑊)

 (15)

Eq. (15) also indicates the optimal data placement ratio in

DRAM and NVM when data is accessed uniformly over the

address space. When using NVMs with symmetric read and

write bandwidths, this equation simplifies to
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊+𝑁𝑉𝑀_𝑅𝑑𝐵𝑊
 which indicates that, when data is ac-

cessed uniformly, data should be placed in the bandwidth ra-

tio of high-bandwidth memory and low-bandwidth memory

to achieve the maximum total read bandwidth. This observa-

tion corroborates recent experimental results based on the het-

erogeneous memory systems of GPUs [3].

3.1.2 Bandwidth Efficiency and Utilization

We define bandwidth efficiency in heterogeneous memory

systems as the total read bandwidth achieved from the appli-

cation’s perspective relative to the read bandwidth of a

DRAM-only system. The bars in Figure 4 show bandwidth

efficiency in this memory organization. The total read band-

width achieved is the sum of the DRAM read bandwidth

(RDRAM) and NVM read bandwidth (RNVM). In this figure, we

assume DRAM has a sustained bandwidth of 19GB/s, which

is similar to the bandwidth of a conventional DDR4 DRAM

rank. We also assume the application is memory-bound with

Figure 3. Logical view of the software-managed, flat-address

NUMA memory system.

Processor
High-Bandwidth
Memory (DRAM)

RDRAM

WDRAM

RNVM

WNVM

Low-Bandwidth
Memory (NVM)

Table 4. Delivered read and write bandwidths in DRAM+NVM heterogeneous memory systems with a flat NUMA organization

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝑅𝐷𝑅𝐴𝑀,
𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

1 − 𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒
× 𝑁𝑉𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊

1 +
𝑊𝐷𝑅𝐴𝑀

𝑅𝐷𝑅𝐴𝑀

) (11)

𝑁𝑉𝑁_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝑅𝑁𝑉𝑀,
1 − 𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

𝐷𝑟𝑎𝑛_𝐻𝑖𝑡𝑅𝑎𝑡𝑒
× 𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝑁𝑉𝑀_𝑅𝑑𝐵𝑊

1 +
𝑁𝑉𝑀_𝑅2𝑊

(𝑅𝑁𝑉𝑀/𝑊𝑁𝑉𝑀)

) (12)

𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝑊𝐷𝑅𝐴𝑀 ,
𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

1 − 𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒
× 𝑁𝑉𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊

1 +
𝑅𝐷𝑅𝐴𝑀

𝑊𝐷𝑅𝐴𝑀

) (13)

𝑁𝑉𝑁_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝑊𝑁𝑉𝑀,
1 − 𝐷𝑟𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒
× 𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝑁𝑉𝑀_𝑅𝑑𝐵𝑊

𝑁𝑉𝑀_𝑅2𝑊 +
𝑅𝑁𝑉𝑀

𝑊𝑁𝑉𝑀

) (14)

a 5-to-1 read to write ratio after the processor’s LLC

(App_R2W = 5). The delivered read to write bandwidth ratio

of both DRAM and NVM is also 5-to-1 as no data cache is

used between the processor’s LLC and memory (DRAM and

NVM). For this DRAM and application configuration, the

maximum achievable read bandwidth in a DRAM-only sys-

tem is 15.83GB/s (5/6 × 19GB/s). In other words, a system

with a read bandwidth efficiency of 100% delivers 15.83GB/s

of read bandwidth. We vary the DRAM hit rate and NVM read

and write bandwidth to explore the bandwidth efficiency of

different configurations. The lines in Figure 4 show total (read

and write) utilizations of DRAM and NVM bandwidths.

Figure 4 shows that bandwidth efficiency increases as DRAM

hit rate increases up to a point and then tapers off. Bandwidth

efficiency can even surpass 100% as data can be retrieved

from both NVM and DRAM simultaneously, utilizing both

bandwidths. Finding a sweet spot where both DRAM and

NVM are not underutilized depends heavily on memory at-

tributes and application characteristics. As shown by prior

work, a judicious data placement enables efficient bandwidth

utilization of both capacity-optimized memory and band-

width-optimized memory [3]. Our model captures and ex-

plains this effect and incorporates additional parameters such

as asymmetry in memory read and write bandwidths and the

impact of application writes on bandwidth utilization.

The bandwidth efficiency is maximized when bandwidth uti-

lization of both DRAM and NVM is 100%. When the DRAM

hit rate exceeds the point at which DRAM utilization is max-

imized, NVM utilization decreases as DRAM cannot provide

more bandwidth despite the increasing hit rate, causing NVM

bandwidth underutilization.

For the configuration in Figure 4 (an application with a 5-to-

1 read to write ratio) and NVM with 16GB/s read and 1.6GB/s

write bandwidth, the maximum achievable bandwidth effi-

ciency is 134%, meaning that DRAM and NVM provide

15.83GB/s and 5.33GB/s of read bandwidth, respectively. To

achieve the maximum bandwidth efficiency in this configura-

tion, 74.8% of read bandwidth should be supplied by DRAM

(𝑂𝑝𝑡𝑖𝑚𝑎𝑙_𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒) and the rest by NVM. This result

highlights the importance of balancing bandwidth and avoid-

ing bandwidth underutilization in flat NUMA memory organ-

izations.

3.2 DRAM Cache with SRAM Tag Storage

In our first study of hardware-managed DRAM cache sys-

tems, we assume tags for the DRAM cache are stored in the

processor using SRAM storage as shown in Figure 5. In this

system, no DRAM bandwidth is consumed on DRAM cache

misses or for fetching tags as tags can be checked by the pro-

cessor without sending any DRAM requests. This organiza-

tion is typically impractical for high-capacity DRAM caches

due to high tag storage overhead. Nonetheless, we study this

organization to compare its bandwidth efficiency with the or-

ganizations in later sections that incur tag fetch overheads.

Before calculating the bandwidth in this organization, we an-

alyze the read and write bandwidth delivered by the DRAM

cache in Figure 5 when the NVM bandwidth is not a limiting

factor. Using notations in Figure 5, RH, RM, W, and WB de-

fine read hit bandwidth, read miss bandwidth (which is the

same as cache fill bandwidth), write bandwidth to DRAM

cache, and writeback bandwidth from the DRAM cache to

NVM, respectively. To study bandwidth delivered in this

memory system, we develop expressions for the bandwidth

variables RH, RM, W, and WB as a function of DRAM hit rate

and application bandwidth demand.

RH = App_RdBW × Dram_HitRate (16)

RM = App_RdBW × (1 - Dram_HitRate) (17)

W = App_WrBW (18)

WB = Dram_Dirty × ((1 - Dram_HitRate) ×
(App_RdBW + App_WrBW)) (19)

Eq. (19) defines the bandwidth that is used to write back dirty

cachelines to NVM on DRAM read misses and write misses.

In both cases, the dirty cacheline is replaced by another line.

A read hit and a write hit do not trigger a writeback as no

Figure 5. Logical view of the hardware-managed DRAM cache

with SRAM tag storage.

Processor
DRAM
Cache

Read Hit
(RH)

Write
(W)

Cache
Fill

WriteBack
(WB)

NVM

SRAM Tag

Read Miss (RM)

Figure 4. Bandwidth efficiency and utilization in DRAM+NVM heterogeneous memory systems with a flat NUMA organization

(DRAM_RdBW = 19GB/s, App_R2W = 5).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%

20%

40%

60%

80%

100%

120%

140%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

DRAM Hit Rate
NVM_RdBW = 2GB/s

NVM_WrBW = 0.2GB/s

DRAM Hit Rate
NVM_RdBW = 4GB/s

NVM_WrBW = 0.4GB/s

DRAM Hit Rate
NVM_RdBW = 8GB/s

NVM_WrBW = 0.8GB/s

DRAM Hit Rate
NVM_RdBW = 16GB/s
NVM_WrBW = 1.6GB/s

B
a
n

d
w

id
th

 U
ti

li
z
a
ti

o
n

B
a
n

d
w

id
th

 E
ff

ic
ie

n
c
y

Read bandwidth efficiency vs. DRAM-only NVM bandwidth utilization DRAM bandwidth utilization

cacheline is replaced. Note that a clean cacheline is never

written back to NVM.

We can now express bandwidth demand on the DRAM cache

using RH, RM, W, and WB.

DRAM_RdBW_Demand = RH + WB (20)

DRAM_WrBW_Demand = RM + W (21)

The bandwidth demand on the DRAM cache when NVM

bandwidth is not a constraint (DRAM_RdBW_Demand and

DRAM_WrBW_Demand) can replace application bandwidth

demand in Equations (2) and (3). Thus, we derive the band-

width delivered by the DRAM cache (DRAM_RdBW_Deliv-
ered and DRAM_WrBW_Delivered) when NVM bandwidth

is not a limiting factor using Equations (23) and (24) in Table

5.

Using bandwidth demand on the DRAM cache and bandwidth

delivered by the DRAM cache, we can find out to what degree

bandwidth is throttled by DRAM. We define a term called the

scale-down factor due to the DRAM cache bandwidth (SDRAM)

to account for this bandwidth reduction. SDRAM is calculated as

follows:

𝑆𝐷𝑅𝐴𝑀 =
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
 (22)

Next, we find out the bandwidth delivered by NVM

(NVM_RdBW_Delivered and NVM_WrBW_Delivered). RM

dictates read bandwidth demand on NVM and WB dictates

write bandwidth demand on NVM. RM and WB can replace

application bandwidth demand in Equations (2) and (3). Thus,

we derive the bandwidth delivered by NVM using Equations

(25) and (26) in Table 5.

Next, we need to find out whether the bandwidth delivered by

NVM can keep up with the bandwidth delivered by the

DRAM cache (i.e., is (RM / SDRAM) < NVM_RdBW_Deliv-
ered and (WB / SDRAM) < NVM_WrBW_Delivered?). If the

DRAM cache consumes bandwidth at a rate at which NVM

cannot keep up with, then the DRAM cache bandwidth is

throttled by the NVM bandwidth. We define a term called the

scale-down factor due to NVM bandwidth (SNVM) to account

for this bandwidth reduction. SNVM is calculated as following:

𝑆𝑁𝑉𝑀 =
𝑅𝑀

𝑆𝐷𝑅𝐴𝑀
⁄

𝑁𝑉𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
 (27)

Using SDRAM and SNVM, we can scale down bandwidth numbers

for RM, RH, WB, and W to derive the scaled variants of these

numbers. For example, the scaled variant of RM is calculated

as RM / (SDRAM × SNVM).

In brief, we can calculate the bandwidth delivered by DRAM

cache and NVM by following the steps below.

1. Calculate bandwidth delivered by DRAM cache

(DRAM_RdBW_Delivered and DRAM_WrBW_Deliv-
ered) when NVM bandwidth is not a limiting factor us-

ing Equations (23) and (24).

2. Calculate bandwidth delivered by NVM

(NVM_RdBW_Delivered and NVM_WrBW_Delivered)

using Equations (25) and (26).

3. Adjust bandwidth numbers (RM, RH, WB, and W) using

scale-down factors (SDRAM and SNVM).

Following the steps above, we calculate memory bandwidth

in a hardware-managed-cache-based heterogeneous memory

system with SRAM tag storage.

3.2.1 Read to Write Bandwidth Ratio

We analyze read and write bandwidth demand on NVM and

DRAM to gain insight into the relationship between band-

width requirements and DRAM hit rate. The read and write

bandwidth demand on NVM is defined by RM and WB, which

are functions of DRAM cache hit rate and application read

and write bandwidth demands. NVM read bandwidth demand

has a linear-inverse relationship with the DRAM hit rate as

shown in Figure 6a (see Eq. (17) for reference).

NVM write bandwidth demand exhibits a more complex be-

havior as it is affected by multiple factors including the prob-

ability of cacheline dirtiness and both application read and

write bandwidths. By substituting the expression for

Table 5. Delivered read and write bandwidths in DRAM+NVM heterogeneous memory systems with DRAM cache

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑,
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊

1 +
𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑

) (23)

𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑,
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊

1 +
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑
𝐷𝑅𝐴𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑

) (24)

𝑁𝑉𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (
𝑅𝑀

𝑆𝐷𝑅𝐴𝑀

,
𝑁𝑉𝑀_𝑅𝑑𝐵𝑊

1 +
𝑁𝑉𝑀_𝑅2𝑊
(𝑅𝑀/𝑊𝐵)

) , 𝑆𝐷𝑅𝐴𝑀 =
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
 (25)

𝑁𝑉𝑀_𝑊𝑟𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = min (
𝑊𝐵

𝑆𝐷𝑅𝐴𝑀

,
𝑁𝑉𝑀_𝑅𝑑𝐵𝑊

𝑁𝑉𝑀_𝑅2𝑊 +
𝑅𝑀
𝑊𝐵

) , 𝑆𝐷𝑅𝐴𝑀 =
𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑚𝑎𝑛𝑑

𝐷𝑅𝐴𝑀_𝑅𝑑𝐵𝑊_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
 (26)

Dram_Drity from Eq. (6) into Eq. (19), we rewrite the expres-

sion for WB.

𝑊𝐵 =
(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)×(𝐴𝑝𝑝_𝑅𝑑𝐵𝑊 +𝐴𝑝𝑝_𝑊𝑟𝐵𝑊)

1+𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)

(28)

Figure 6b shows the relationship between NVM write band-

width, DRAM hit rate, and application read and write band-

width. WB is not only dependent on App_WrBW, but it is also

dependent on App_RdBW.

Using RM and WB expressions, we calculate the ratio of read

to write bandwidth demand on NVM as shown in Figure 6c.

𝑅𝑀

𝑊𝐵
=

𝐴𝑝𝑝_𝑅𝑑𝐵𝑊(𝐴𝑝𝑝_𝑊𝑟𝐵𝑊+𝐴𝑝𝑝_𝑅𝑑𝐵𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒))

𝐴𝑝𝑝_𝑊𝑟𝐵𝑊(𝐴𝑝𝑝_𝑅𝑑𝐵𝑊+𝐴𝑝𝑝_𝑊𝑟𝐵𝑊)
=

𝐴𝑝𝑝_𝑅2𝑊(1+𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒))

1+𝐴𝑝𝑝_𝑅2𝑊

(29)

At the two opposite extremes, when DRAM hit rate is 0% and

approaching 100%, RM / WB evaluates to App_R2W and

App_R2W / (1 + App_R2W), respectively. Figure 6c reveals

that the ratio of read to write bandwidth demand on NVM is

linearly dependent on DRAM miss rate and the ratio de-

creases as the DRAM hit rate increases.

Similarly, we can calculate the ratio of read to write band-

width demand on the DRAM cache (DRAM_RdBW_Demand
/ DRAM_WrBW_Demand) which is shown in Figure 6d. At

the two opposite extremes, when DRAM hit rate is 0% and

100%, DRAM_RdBW_Demand / DRAM_WrBW_Demand
evaluates to 1 / (1 + App_R2W) and App_R2W, respectively.

One important observation is that, as DRAM hit rate in-

creases, the ratio of read to write bandwidth demand on

DRAM cache increases while the ratio of read to write band-

width demand on NVM decreases linearly.

3.2.2 Bandwidth Efficiency and Utilization

The bars in Figure 7 show the total read bandwidth from the

application’s perspective achieved in this memory system rel-

ative to a DRAM-only system. In other words, the bars show

the read bandwidth efficiency achieved by different DRAM

cache and NVM configurations relative to a DRAM-only sys-

tem. The total read bandwidth achieved is the sum of the read

hit bandwidth (RH) and read miss bandwidth (RM). In this

figure, we assume that DRAM_RdBW is 19GB/s and the ap-

plication is memory bandwidth bound with App_R2W of 5.

For this configuration, the maximum achievable read band-

width in a DRAM-only system is 15.83GB/s (5/6 × 19GB/s).

We vary the DRAM cache hit rate and NVM bandwidth to

explore the bandwidth efficiency of different configurations.

The lines in Figure 7 show the total (read and write) utiliza-

tions of DRAM and NVM bandwidths, including bandwidth

overheads.

There are some key observations from Figure 7. First, DRAM

cache hit rate has a huge impact on the achievable read band-

width. For example, for an NVM with a 2GB/s read and

0.2GB/s write bandwidth, only 10% of the maximum read

bandwidth is achievable when the DRAM cache hit rate is

Figure 7. Bandwidth efficiency and utilization in DRAM+NVM heterogeneous memory systems with DRAM cache with SRAM tag

storage (DRAM_RdBW = 19GB/s, App_R2W = 5).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

DRAM Hit Rate
NVM_RdBW = 2GB/s

NVM_WrBW = 0.2GB/s

DRAM Hit Rate
NVM_RdBW = 4GB/s

NVM_WrBW = 0.4GB/s

DRAM Hit Rate
NVM_RdBW = 8GB/s

NVM_WrBW = 0.8GB/s

DRAM Hit Rate
NVM_RdBW = 16GB/s
NVM_WrBW = 1.6GB/s

B
a
n

d
w

id
th

 U
ti

li
z
a
it

o
n

B
a
n

d
w

id
th

 e
ff

ic
ie

n
c
y

Read bandwidth efficiency vs. DRAM-only NVM bandwidth utilization DRAM bandwidth utilization

Figure 6. Bandwidth demand on NVM and DRAM cache as a function of the DRAM cache hit rate.

0
20

hit 0

App_R2W = 1 App_R2W = 2 App_R2W = 5 App_R2W = 10

(a) (b) (c) (d)

0% 20% 40% 60% 80% 100%
W

B
 B

an
d

w
id

th
DRAM Cache Hit Rate

A
p
p
_W

rB
W

0% 20% 40% 60% 80% 100%

R
M

 B
an

d
w

id
th

DRAM Cache Hit Rate

A
p
p
_R

d
B
W

0

2

4

6

8

10

0% 20% 40% 60% 80% 100%

R
e

ad
 t

o
 W

ri
te

 R
at

io
 o

n
 N

V
M

DRAM Cache Hit Rate

0

2

4

6

8

10

0% 20% 40% 60% 80% 100%

R
ea

d
 t

o
 W

ri
te

 R
at

io
 o

n
 D

R
A

M

DRAM Cache Hit Rate

80%. When the DRAM cache hit rate gets close to 99%, the

achievable read bandwidth jumps up to 99%. Second, when

the DRAM cache hit rate is relatively low (<95%), the NVM

bandwidth affects the bandwidth efficiently significantly,

while NVM bandwidth is not a major factor for systems with

high DRAM cache hit rates. Third, NVM bandwidth and

DRAM cache bandwidth affect each other. For some config-

urations, NVM bandwidth is fully utilized while DRAM

bandwidth is underutilized (e.g., when the hit rate is low and

NVM bandwidth is low). For other configurations, DRAM

bandwidth is fully utilized while NVM bandwidth is underuti-

lized (e.g., when hit rate is very high). Fourth, increasing

NVM bandwidth increases DRAM bandwidth utilization,

which illustrates that DRAM bandwidth was underutilized be-

cause NVM bandwidth could not keep up with bandwidth de-

mand by DRAM.

3.3 Intelligent DRAM Cache

In our next study, we assume the DRAM cache incorporates

logic that handles read and write requests without the proces-

sor’s help and tags for the DRAM cache are placed in the

DRAM package (Figure 8). Tags can be implemented using

either DRAM cells or SRAM cells, the latter of which may be

in a logic die within the DRAM package. In this organization,

the DRAM cache is able to fetch tags internally, perform tag

comparison, handle data replacement, and request data from

NVM. Such an organization may be desirable in future 3D-

stacked DRAM packages where a logic die within the pack-

age can provide cache control functions. We refer to such a

DRAM cache as an intelligent DRAM cache.

We start by studying the DRAM bandwidth for reads and

writes. For reading cachelines, the processor sends a request

to DRAM and waits for a response. The intelligent DRAM

cache performs tag comparison to determine a hit or miss. In

the case of a cache hit, the intelligent DRAM responds with

data. In the case of a miss, the intelligent DRAM initiates miss

handling, performs a cacheline replacement, and then re-

sponds with the requested data. If the existing cacheline is

clean, the intelligent DRAM fetches the requested data from

NVM. If the existing cacheline is dirty, the intelligent DRAM

cache evicts (writes back) the line from the cache and fetches

the requested data from NVM. This process results in variable

data read latency from the processor’s point of view, depend-

ing on cacheline residence, dirtiness of data, and NVM band-

width utilization.

1 This entails storing entire address (excluding cacheline offset) in DRAM.

For writing cachelines, the processor sends data to DRAM

and the intelligent DRAM cache performs tag comparison. In

the case of a cache hit, the intelligent DRAM cache replaces

the data. In the case of a miss, if the existing data is dirty, the

intelligent DRAM cache evicts the line to NVM which con-

sumes DRAM read bandwidth and NVM write bandwidth.

Next, the new tag and data are written to DRAM cache.

In the case where tags are stored in DRAM, we assume that

the intelligent DRAM cache has greater internal bandwidth

for fetching DRAM tags (e.g., by storing tags in dedicated in-

ternal banks or using 3D-stacked DRAMs with higher internal

bandwidth). Thus, tag fetch does not consume data bandwidth

that would otherwise be utilized by the processor and does not

block the processor’s access to data. In Section 3.5, we pro-

vide a DRAM cache model where the tag fetch overhead af-

fects the processor’s DRAM data bandwidth. Considering

these assumptions, the bandwidth expressions for the varia-

bles RH, RM, W, and WB in this model are the same as those

in the DRAM cache with tag storage in the processor. As a

result, greater internal bandwidth and intelligence in DRAM

negate the tag fetch overhead for both reads and writes. Since

the intelligent DRAM cache provides the same bandwidth ef-

ficiency and utilization as the DRAM cache with SRAM-tag,

we do not present any analytical results for it.

3.4 Write-intelligent DRAM Cache

In our next study, we assume tags for the DRAM cache are

stored in DRAM and the DRAM cache features intelligent

logic that handles only write requests without the processor’s

help. Figure 9 shows a logical view of the write-intelligent

DRAM cache. As discussed in Section 3.3, using greater in-

ternal bandwidth and intelligent logic in the DRAM cache for

tag fetch results in reduced external DRAM bandwidth de-

mand. In this organization, the processor performs tag fetch

and comparison for read requests, but hands over processing

write requests to the DRAM intelligent logic. Since writes are

off the critical path, the intelligent logic in the DRAM cache

opportunistically uses internal bandwidth for fetching tags for

write requests, which lowers external bandwidth demand.

In order to estimate the impact of tag reads on the processor-

DRAM interface bandwidth, we adopt the Alloy DRAM

cache model [17] where the DRAM is a direct-mapped, non-

inclusive cache that uses a write-allocate policy and a non-

power-of-two number of sets.1 In Alloy DRAM cache, cache

Figure 9. Logical view of the write-intelligent DRAM cache

with DRAM tag storage.

Processor
DRAM
Cache

Read (R)

Write (W)

Cache
Fill

WriteBack
caused by
Write Miss
(WBW)

NVM

Read Miss (RM)

WriteBack caused by Read Miss (WBR)

DRAM Tag

Figure 8. Logical view of the intelligent DRAM cache.

Processor
DRAM
Cache

Read Hit
(RH)

Write
(W)

Cache
Fill

WriteBack
(WB)

NVM

Read Miss (RM)

Tag

data lines are 64 bytes long and tags and miscellaneous bits

are 16 bytes long. Each time the processor accesses the

DRAM cache, it transfers 80 bytes of tag and data that are

placed side by side in DRAM. While we base our analysis on

the Alloy cache, our models extend to other variants as well.

We start by studying the DRAM bandwidth for reads and

writes. For reads, the processor needs to fetch both data and

tag from DRAM to determine cache hit or miss. We assume

that both the tag and data are fetched with a single memory

request to reduce memory access latency. It is possible to read

tags first and then data on a tag match (to save bandwidth),

but this results in increased read hit latency. Thus, we assume

the processor fetches both tag and data (80 bytes) with a single

request, taking a burst of five DRAM transfers [17]. If the tag

matches (cache hit), 20% (16 bytes out of 80 bytes) of DRAM

bandwidth is “wasted” (i.e., not useful from the application’s

perspective). If the tag does not match (cache miss) and the

data is dirty, similarly 20% of DRAM bandwidth is wasted as

dirty data is used by the processor for writing back data to

NVM. That is why there exist two logical writeback band-

widths in Figure 9 (Note that, as shown in Figure 2, an actual

physical implementation only has one write datapath to

NVM). However, if the fetched data on a miss is clean, the

entire DRAM bandwidth is wasted. On a read miss, the pro-

cessor initiates a DRAM cache fill from NVM which con-

sumes DRAM write bandwidth. The intelligent logic in the

DRAM cache handles the tag update. In brief, for every read

request, 80 bytes are fetched from DRAM, resulting in a

1.25× increase in DRAM bandwidth.

For writes, the processor sends data to DRAM and the intelli-

gent cache management logic performs tag comparison to in-

dicate a cache hit or miss and handles the write request ac-

cordingly. In the case of a cache hit, the intelligent DRAM

cache replaces the data. In the case of a miss, if the existing

data is dirty, the intelligent DRAM cache evicts the line to

NVM which consumes DRAM read bandwidth. Then, the

new data and tag are written to the DRAM cache.

We can now write the bandwidth expressions for the variables

R, RM, W, and WB in this model. We logically break

writeback bandwidth (WB) into two separate expressions.

WBW is the writeback bandwidth of dirty lines replaced by

write misses. WBR is the writeback bandwidth of dirty lines

replaced by read misses.

R = 1.25 × App_RdBW (30)

RM = App_RdBW × (1 - Dram_HitRate) (31)

W = App_WrBW (32)

WBW = Dram_Dirty × (1 - Dram_HitRate) ×
App_WrBW (33)

WBR = Dram_Dirty × (1 - Dram_HitRate) ×
App_RdBW (34)

As can be seen from Equations (30)-(34), only the R expres-

sion here is different from a DRAM cache with SRAM tags.

Due to the latency reduction policy of fetching the combined

tag and data, 1/1.25 × Dram_HitRate = 0.8 × Dram_HitRate

fraction of the R bandwidth is useful from the application’s

perspective and the rest is wasted on fetching tags and missed

data. For instance, with a DRAM hit rate of 60%, only 48%

of the total R bandwidth is useful. It is worth mentioning that

although the dirty, missed cachelines fetched by the processor

are used for writing to NVM (WBR), they are not considered

useful data to the application.

Bandwidth demand on the DRAM is expressed as:

DRAM_RdBW_Demand = R + WBW (35)

DRAM_WrBW_Demand = RM + W (36)

As for bandwidth demand on NVM, similar to Section 3.2,

RM dictates the read bandwidth demand on NVM and WB
(WBR + WBW) dictates the write bandwidth demand on NVM.

With the updated R expression, we can calculate the band-

width delivered by DRAM cache and NVM by following the

steps presented in Section 3.2.

3.4.1 Read to Write Bandwidth Ratio

The ratio of read to write bandwidth on NVM in a write-intel-

ligent DRAM cache is the same as the ratio of read to write

bandwidth on NVM in a DRAM cache with SRAM tags (Fig-

ure 6c). The reason is that the RM and WB bandwidth expres-

sions in both memory systems are the same.

However, the read bandwidth to write bandwidth ratio at the

write-intelligent DRAM cache (DRAM_RdBW_Demand /
DRAM_WrBW_Demand) is different from that of a DRAM

cache with SRAM tags and evaluates to:

1.25×𝐴𝑝𝑝_𝑅2𝑊+
1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

1+𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)

𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)+1

(37)

When DRAM hit rate approaches 100%, this ratio equals 1.25
× App_R2W. Compared to DRAM cache with SRAM-tag,

the write-intelligent DRAM cache has higher read to write

bandwidth demand for the same values of App_R2W and

Dram_HitRate.

3.4.2 Bandwidth Efficiency and Utilization

Figure 10 shows the bandwidth efficiency and utilization in

this heterogeneous memory system. We make the same as-

sumptions as in Section 3.2 and we similarly vary DRAM

cache hit rate and NVM read and write bandwidth for design

exploration purposes. Similar to a DRAM cache with SRAM-

tag storage, DRAM hit rate and NVM bandwidth have signif-

icant impact on bandwidth efficiency. However, the band-

width efficiency of this system is lower than that of SRAM

tag storage when the DRAM cache hit rate is high. For exam-

ple, the maximum efficiency reported in Figure 10 is 82%.

This reduction is due to the tag fetch overhead in this memory

system.

In addition, DRAM bandwidth utilization of this memory sys-

tem is equal to or higher than that of SRAM tag storage as

more DRAM bandwidth is wasted on unused data and tag

overhead. In contrast, NVM bandwidth utilization of this

memory system is equal to or lower than that of SRAM-tag

storage. When DRAM bandwidth utilization is 100%, NVM

bandwidth could be underutilized. As some DRAM band-

width is wasted in this memory system, the NVM bandwidth

is more severely underutilized in these cases compared to

SRAM tag storage.

3.5 Unintelligent DRAM Cache

In our next study, we evaluate bandwidth of an “unintelligent”

DRAM-cache based heterogeneous memory system with

DRAM tags. We make the same assumptions as those ex-

plained in Section 3.4, but the DRAM cache is implemented

as a simple DRAM module with no intelligence for tag com-

parison and cacheline replacement. All tag comparisons and

cache management decisions are performed by the processor.

A logical view of such an organization is shown in Figure 11.

Similar to the write-intelligent DRAM cache, the physical

structure (Figure 2) of this organization requires only one

write datapath to NVM.

Reads in this organization are handled in the same way as a

write-intelligent DRAM cache. The only difference is that in

the case of a DRAM cache read miss, the processor should

also write the tag to the DRAM cache as the DRAM cache

does not feature intelligent logic to compute tags.

However, writes are handled differently. For writes, the pro-

cessor first needs to fetch the tag to determine whether the

access is a hit or miss in the DRAM cache. This results in

consuming additional DRAM read bandwidth.2 In the case of

a hit, the new data is written. In the case of a miss, if the ex-

isting data is dirty, the processor fetches it from the DRAM

cache and writes it to NVM (WBW) which consumes DRAM

read bandwidth.3 The processor then writes the new tag and

2 There are proposals to avoid fetching tags from DRAM (e.g., the DRAM

Cache Presence technique [7]) but require changing the processor’s LLC.
3 We assume the processor fetches the tag and existing dirty data serially in

data. In either case, 20% of DRAM bandwidth is wasted for

writing tags. In brief, this organization incurs more bandwidth

overhead for fetching and updating tags compared to previ-

ously discussed designs.

We can now rewrite the expressions for the variables R, RM,

W, and WB in this model.

R = 1.25 × App_RdBW + 0.25 × App_WrBW (38)

RM = App_RdBW × (1 - Dram_HitRate) (39)

W = App_WrBW + 0.25 × App_WrBW × (1-
Dram_HitRate) + 0.25 × App_RdBW × (1-
Dram_HitRate) (40)

WBW = Dram_Dirty × (1 - Dram_HitRate) ×
App_WrBW (41)

WBR = Dram_Dirty × (1 - Dram_HitRate) ×
App_RdBW (42)

For the W expression, we assume that existing metadata are

not updated for read and write hits. Otherwise, even more

write bandwidth overheads will be incurred. Note that not all

of the R and W bandwidths is useful and a fraction is wasted

on tag fetching and missed data fetching. Bandwidth demand

on the DRAM is expressed as:

DRAM_RdBW_Demand = R + WBW (43)

DRAM_WrBW_Demand = RM + W (44)

With these updated expressions, we can similarly calculate the

bandwidth delivered by the DRAM cache and NVM by fol-

lowing the steps presented in Section 3.2.

3.5.1 Read to Write Bandwidth Ratio

The ratio of read to write bandwidth on NVM in this memory

system is the same as in the DRAM cache with SRAM-tag

(Figure 6c) as RM and WB bandwidth expressions are the

same. However, the read bandwidth to write bandwidth ratio

on the DRAM cache (DRAM_RdBW_Demand /
DRAM_WrBW_Demand) is different and is derived as:

1.25×𝐴𝑝𝑝_𝑅2𝑊+0.25+
1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒

1+𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)

1.25×𝐴𝑝𝑝_𝑅2𝑊×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)+0.25×(1−𝐷𝑟𝑎𝑚_𝐻𝑖𝑡𝑅𝑎𝑡𝑒)+1
 (45)

the case of write miss. Alternatively, the processor can speculatively fetch

data and tag in parallel. This reduces latency, but wastes bandwidth if ex-
isting data is not dirty.

Figure 10. Bandwidth efficiency and utilization in DRAM+NVM heterogeneous memory systems with write-intelligent DRAM

cache with DRAM tag storage (DRAM_RdBW = 19GB/s, App_R2W = 5).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

DRAM Hit Rate
NVM_RdBW = 2GB/s

NVM_WrBW = 0.2GB/s

DRAM Hit Rate
NVM_RdBW = 4GB/s

NVM_WrBW = 0.4GB/s

DRAM Hit Rate
NVM_RdBW = 8GB/s

NVM_WrBW = 0.8GB/s

DRAM Hit Rate
NVM_RdBW = 16GB/s
NVM_WrBW = 1.6GB/s

B
a
n

d
w

id
th

 U
ti

li
z
a
ti

o
n

B
a
n

d
w

id
th

 E
ff

ic
ie

n
c
y

Read bandwidth efficiency vs. DRAM-only NVM bandwidth utilization DRAM bandwidth utilization

Figure 11. Logical view of the unintelligent DRAM cache with

DRAM tag storage.

Processor

DRAM
Cache

Read (R)

Write (W)

Cache
Fill

WriteBack
caused by
Write Miss
(WBW)

NVM

Read Miss (RM)

WriteBack caused by Read Miss (WBR)

DRAM Tag

When the DRAM hit rate approaches 100%, this ratio equals

1.25 × App_R2W + 0.25.

3.5.2 Bandwidth Efficiency and Utilization

Figure 12 shows the bandwidth efficiency and utilization in

this heterogeneous memory system. We make the same as-

sumptions as in Section 3.2 and we similarly vary DRAM

cache hit rate and NVM read and write bandwidth for design

exploration purposes. Similar to previous systems studied,

DRAM hit rate and NVM bandwidth have significant impact

on bandwidth efficiency. However, bandwidth efficiency of

this system is even lower than the two previous systems when

DRAM cache hit rate is high (with a maximum of 79%). The

reason is higher tag fetch and update overhead in this memory

system relative to the previously discussed organizations.

4. Discussion of Bandwidth Efficiency

In this section, we compare the bandwidth efficiency of the

three cache-based heterogeneous memory systems described

in Section 3 under different configurations. As defined earlier,

the bandwidth efficiency of DRAM-cache-based systems in-

dicates the total read bandwidth achieved from the applica-

tion’s perspective relative to the read bandwidth of a DRAM-

only system. In our models, the DRAM cache with SRAM

tags and intelligent DRAM cache feature the same bandwidth

efficiency. Hence, we do not present results for the intelligent

DRAM cache.

Figure 13 compares the bandwidth efficiency of the three

DRAM-cache-based memory systems under different NVM

bandwidths. We make the same assumptions as in Section 3.2

and similarly vary DRAM cache hit rate and NVM read and

write bandwidth for design exploration purposes. The NVM

read to write bandwidth ratio is kept constant. When the

DRAM hit rate is low, these systems achieve the same band-

width efficiency because at low hit rates, a large number of

requests are fulfilled by NVM, causing NVM bandwidth to

become the bottleneck. As a result, DRAM bandwidth re-

mains underutilized, negatively impacting the system band-

width efficiency. This underutilization means that DRAM can

fulfill bandwidth overheads for tags and data misses with no

impact on overall efficiency. For instance, when NVM read

bandwidth is 2GB/s, even at a hit rate of 95%, these systems

have the same bandwidth efficiency (24%). When NVM read

bandwidth increases to 8GB/s, differences in their bandwidth

efficiency are more pronounced (76-95% at a hit rate of 95%).

This suggests that when NVM bandwidth is much lower than

DRAM bandwidth, the organization of the tags and memory

system does not affect how much bandwidth the memory sys-

tem can deliver simply because the bottleneck is shifted to

NVM bandwidth. So when NVM bandwidth is very low, one

could use the most cost-effective or simplest memory system

without impacting performance.

However, when NVM bandwidth is higher (e.g., NVM read

bandwidth of 16GB/s), the more efficient DRAM cache im-

plementations (i.e., with SRAM tags or intelligent in-DRAM

tag management for read and writes) achieves better band-

width efficiency at high hit rates. Another observation is that

Figure 12. Bandwidth efficiency and utilization in DRAM+NVM heterogeneous memory systems with unintelligent DRAM cache

with DRAM tag storage (DRAM_RdBW = 19GB/s, App_R2W = 5).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

9
5

%

9
9

%

DRAM Hit Rate
NVM_RdBW = 2GB/s

NVM_WrBW = 0.2GB/s

DRAM Hit Rate
NVM_RdBW = 4GB/s

NVM_WrBW = 0.4GB/s

DRAM Hit Rate
NVM_RdBW = 8GB/s

NVM_WrBW = 0.8GB/s

DRAM Hit Rate
NVM_RdBW = 16GB/s
NVM_WrBW = 1.6GB/s

B
a
n

d
w

d
it

h
 U

ti
li

z
a
ti

o
n

B
a
n

d
w

id
th

 E
ff

ic
ie

n
c
y

Read bandwidth efficiency vs. DRAM-only NVM bandwidth utilization DRAM bandwidth utilization

Figure 13. Bandwidth efficiency of different DRAM+NVM heterogeneous memory systems with varying NVM bandwidth

(DRAM_RdBW = 19GB/s, App_R2W = 5). NVM read to write bandwidth ratio is 10 across all bars.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

DRAM Hit Rate
NVM_RdBW = 2GB/s

NVM_WrBW = 0.2GB/s

DRAM Hit Rate
NVM_RdBW = 4GB/s

NVM_WrBW = 0.4GB/s

DRAM Hit Rate
NVM_RdBW = 8GB/s

NVM_WrBW = 0.8GB/s

DRAM Hit Rate
NVM_RdBW = 16GB/s
NVM_WrBW = 1.6GB/s

B
a
n

d
w

id
th

 E
ff

ic
ie

n
c
y

DRAM cache with SRAM tag Write-Intelligent DRAM cache with DRAM tag Unintelligent DRAM cache with DRAM tag

a write-intelligent DRAM cache is only marginally better than

an unintelligent DRAM in terms of bandwidth efficiency even

when the DRAM hit rate is high.

Figure 14 compares the bandwidth efficiency of the three

cache-based heterogeneous memory systems under varying

application read to write ratios. In this figure, we assume that

NVM read bandwidth and write bandwidth are 8GB/s and

0.8GB/s, respectively. Also, DRAM bandwidth is set to

19GB/s. When the DRAM hit rate is very high (e.g., 99%),

the application read to write ratio has a very limited impact on

bandwidth efficiency as most of the bandwidth is filtered by

DRAM, which has symmetric read and write bandwidths.

However, when DRAM hit rate is low (e.g., 60%), as the ap-

plication read to write ratio increases, bandwidth efficiency

increases. The reason for the increase in bandwidth efficiency

is that NVM write bandwidth is much lower than NVM read

bandwidth, thus negatively impacting bandwidth efficiency

more when most of the memory requests that cannot be fil-

tered by the DRAM cache are writes. The limited NVM band-

width (especially, write bandwidth) also reduces DRAM

bandwidth utilization. As the application read to write ratio

increases, the negative impact of limited NVM write band-

width on DRAM bandwidth utilization diminishes, which re-

sults in increased DRAM bandwidth utilization.

Another observation from Figure 14 is that, for cases with

very high DRAM cache hit rates, the difference in bandwidth

efficiency of the write-intelligent DRAM system and that of

the unintelligent DRAM system shrinks as the application

read to write ratio increases because the write-intelligent

DRAM is beneficial only when write requests are abundant.

Note that when the DRAM hit rate is low, the difference in

bandwidth efficiency between these two systems is discerni-

ble only when DRAM bandwidth utilization approaches

100%.

Figure 15 shows the impact of NVM write bandwidth on the

bandwidth efficiency of different heterogeneous memory sys-

tems. In this figure, we hold NVM read bandwidth and

DRAM bandwidth constant at 8GB/s and 19GB/s, respec-

tively. The application read to write bandwidth ratio is also

held constant at 5. NVM write bandwidth is varied from

0.4GB/s to 4GB/s (5% to 50% of NVM read bandwidth). This

figure shows that NVM write bandwidth has a significant im-

pact on bandwidth efficiency even though bandwidth effi-

ciency measures the read bandwidth from an application’s

perspective. The reason is that the total NVM bandwidth is

shared between reads and writes with writes being more time-

consuming. By increasing the NVM write bandwidth, DRAM

utilization (and thus bandwidth efficiency) improves as NVM

can fulfill more requests. On the other hand, when the DRAM

hit rate is very high (e.g., 99%), NVM write bandwidth is not

a major limiting factor as most requests are satisfied by

DRAM without requiring NVM accesses.

5. Latency Breakdown

In this section, we analyze the latency of different heteroge-

neous memory organizations. Table 6 summarizes the latency

incurred to service requests from DRAM (hit in the DRAM

Figure 14. Bandwidth efficiency of different DRAM+NVM heterogeneous memory systems with varying application read to write

bandwidth ratio (DRAM_RdBW = 19GB/s, NVM_RdBW = 8GB/s, NVM_WrBW = 0.8GB/s).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

DRAM Hit Rate
App_R2W = 1

DRAM Hit Rate
App_R2W = 2

DRAM Hit Rate
App_R2W = 5

DRAM Hit Rate
App_R2W = 10

B
a

n
d

w
id

th
 E

ff
ic

ie
n

c
y

DRAM cache with SRAM tag Write-Intelligent DRAM cache with DRAM tag Unintelligent DRAM cache with DRAM tag

Figure 15. Bandwidth efficiency of different DRAM+NVM heterogeneous memory systems with varying NVM write bandwidth

(DRAM_RdBW = 19GB/s, NVM_RdBW = 8GB/s, App_R2W = 5).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

9
5
%

9
9
%

DRAM Hit Rate
NVM_WrBW = 0.4GB/s

NVM_R2W = 20

DRAM Hit Rate
NVM_WrBW = 0.8GB/s

NVM_R2W = 10

DRAM Hit Rate
NVM_WrBW = 1.6GB/s

NVM_R2W = 5

DRAM Hit Rate
NVM_WrBW = 4GB/s

NVM_R2W = 2

B
a

n
d

w
id

th
 E

ff
ic

ie
n

c
y

DRAM cache with SRAM tag Write-Intelligent DRAM cache with DRAM tag Unintelligent DRAM cache with DRAM tag

cache) and NVM (miss in the DRAM cache). We do not in-

clude the processor’s cache hierarchy latency and memory

queuing latency as those would be relatively unchanged

across different memory organizations. In Table 6, “read” in-

dicates the latency to read from memory cells and “bus” indi-

cates the latency to transfer data over the off-chip interface to

the processor.

To have a better sense of the latency variation across different

organizations, we visualize the latency expressions in Figure

16. We consider the latency of a single access to the heteroge-

neous memory in the absence and presence of row buffer lo-

cality (RBL). When there is RBL, memory requests hit in the

row buffer and are serviced with a latency of column access

time (tCL). When there is no RBL, the memory requests miss

in the row buffer and are serviced with a latency of row cycle

time (tRC). Note that tRC=tRAS+tRP and tRP is typically 0

in NVM. In either case, data is transferred over the off-chip

bus interface with a latency of tBURST. We assume that

DRAM and NVM have a tCL of 14ns, DRAM has a tRC of

49ns and tBURST of 5ns, NVM has a tRC of 69ns and

tBURST of 10ns, and SRAM tag read takes 2ns.

Figure 16 shows that latency incurred could be very broad de-

pending on row buffer locality and the number of required ac-

cesses. For instance, when there is a miss in DRAM cache,

additional latency is incurred to access NVM. In the intelli-

gent DRAM cache, two separate memory accesses are always

required since tag and data are stored in separate locations.

This increases latency significantly especially when both ac-

cesses suffer from row buffer conflicts. In write-intelligent

and unintelligent DRAM caches, however, tag and data are

stored sequentially in accordance with the Alloy cache model

(Section 3.4). Thus, DRAM cache hits require only one

memory access.

As expected the flat-address NUMA organization incurs the

lowest latency since there is not tag check overhead. DRAM

cache with SRAM tags has slightly higher latency due to

SRAM tag lookup. Other DRAM caches have higher latency

especially when tag and data fetch are not combined in a sin-

gle access.

6. Related Work

Prior work on heterogeneous memory systems has proposed

using DRAM as either an OS-managed flat memory or an ex-

tra level of cache. When used as a cache, tags can be stored in

a separate SRAM structure or in DRAM. Storing tags in

SRAM incurs high storage overhead for large caches, which

makes it impractical for high-capacity DRAM caches. Storing

tags in DRAM, on the other hand, has its own challenges in-

cluding bandwidth overheads for accessing tags from the pro-

cessor or complexity of incorporating tag management logic

within the DRAM package.

Prior proposals for heterogeneous memory organizations do

not perform analytical studies for bandwidth estimation. The

closest work to ours that tries to analytically model heteroge-

neous memory systems is done by Bolotin et al. [4]. However,

they disregard bandwidth asymmetry and different organiza-

tions of DRAM-cache-based systems.

DRAM-cache-based memory systems. The DRAM cache

proposal by Loh and Hill [13, 14] uses a 29-way set associa-

tive cache and co-locates tags and data for all ways of a set in

the same DRAM row. The Loh-Hill cache is optimized for hit

rate, as each cache access requires fetching all tags first and

then the matching line, incurring high bandwidth overhead.

To quickly indicate a hit or miss, they use a MissMap SRAM

structure alongside the LLC. Alloy cache [17] is a latency-

optimized DRAM cache organization that fetches the tag and

data from DRAM together in a single burst to eliminate tag

and data serialization. Alloy cache is more bandwidth effi-

cient than the Loh-Hill cache as only 1.25 lines are fetched

Table 6. Latency breakdown

Flat-address NUMA

DRAM: DRAM data read + DRAM bus

NVM: NVM data read + NVM bus

DRAM cache with SRAM tag

Hit: SRAM tag read + DRAM data read + DRAM bus

Miss: SRAM tag read + NVM data read + NVM bus

Intelligent DRAM cache

Hit: DRAM tag read + DRAM data read + DRAM bus

Miss: DRAM tag read + NVM data read + NVM bus

Write-intelligent and unintelligent DRAM caches (Both

use Alloy cache model)

Hit: combined DRAM tag and data read + DRAM bus

Miss: combined DRAM tag and data read + DRAM bus

+ NVM data read + NVM bus

Figure 16. Latency breakdown for different organizations.

RBL stands for row buffer locality. DRAM and NVM accesses

are shown in green and blue, respectively.

0

20

40

60

80

100

120

140

w
/

R
B

L

w
/o

 R
B

L

w
/

R
B

L

w
/o

 R
B

L

w
/

R
B

L

w
/o

 R
B

L

w
/

R
B

L

w
/o

 R
B

L

w
/

ta
g

 a
n

d
 d

a
ta

 R
B

L

w
/

ta
g

,
w

/o
 d

a
ta

 R
B

L

w
/o

 t
a

g
,
w

/
d

a
ta

 R
B

L

w
/o

 t
a
g

 a
n

d
 d

a
ta

 R
B

L

w
/

ta
g

 a
n

d
 d

a
ta

 R
B

L

w
/

ta
g

,
w

/o
 d

a
ta

 R
B

L

w
/o

 t
a

g
,
w

/
d

a
ta

 R
B

L

w
/o

 t
a
g

 a
n

d
 d

a
ta

 R
B

L

w
/

R
B

L

w
/o

 R
B

L

w
/

D
R

A
M

 a
n

d
 N

V
M

 R
B

L

w
/

D
R

A
M

,
w

/o
 N

V
M

 R
B

L

w
/o

 D
R

A
M

,
w

/
N

V
M

 R
B

L

w
/o

 D
R

A
M

 a
n

d
 N

V
M

 R
B

L

DRAM NVM Hit Miss Hit Miss Hit Miss

Flat NUMA DRAM
cache with
SRAM tag

Intelligent DRAM cache Write-intelligent
and unintelligent

DRAM cache
L

a
te

n
c

y
 (

n
s
)

SRAM tag read DRAM read DRAM bus NVM read NVM bus

per request. Hence, our bandwidth models for DRAM caches

with DRAM-tag are based on the Alloy organization. Further,

our models use a direct-mapped DRAM cache as in Alloy and

Intel’s Knights Landing [20]. The BEAR DRAM cache [7]

entails three techniques to further optimize bandwidth effi-

ciency in DRAM caches with DRAM-tag. Using a relatively

small amount of SRAM storage, BEAR selectively bypasses

cache fills on misses, selectively eliminates fetching tags from

DRAM for writebacks from LLC to DRAM, and reduces the

bandwidth overhead of fetching tags on reads. Unlike previ-

ous caches, the Footprint DRAM cache [10] is a page-based

cache in which a single SRAM tag per page is used to reduce

tag storage overhead. Only predicted blocks of a page are

transferred to reduce wasted off-chip bandwidth. Similarly,

Unison DRAM cache [9] is a page-based, set-associative

cache. But tags and data for pages in a set are co-located in

the same DRAM row. Unison uses a way predictor to fetch a

single tag and a data block in a back-to-back transfer.

Our models can be extended to cover other organizations of

block-based and page-based heterogeneous memory systems

[13, 14, 10, 9, 12], hit-miss and line predictors [13, 10, 9, 6],

and bandwidth optimization techniques [7].

7. Conclusions

We analytically studied the bandwidth efficiency and band-

width utilization of a range of heterogeneous memory sys-

tems. We separate read and write bandwidths and consider the

impact of low write bandwidth of NVM on the bandwidth ef-

ficiency of heterogeneous memory systems. Below is a sum-

mary of our findings.

In NUMA flat-address memory systems:

 The maximum bandwidth efficiency (i.e., total delivered

read bandwidth) is achieved when both DRAM and

NVM bandwidths are fully utilized (100% utilization).

 Data placement between DRAM and NVM has direct im-

pact on bandwidth efficiency. The optimal data place-

ment for bandwidth maximization is a function of not

only the bandwidths of memory, but also of application

bandwidth asymmetry and NVM bandwidth asymmetry.

In DRAM-cache-based systems:

 The bandwidth efficiency improves with an increase in

the DRAM hit rate (and thus a decrease in NVM band-

width utilization).

 As the DRAM hit rate increases, the ratio of read to write

bandwidth demand on the DRAM cache increases, while

the ratio of read to write bandwidth demand on NVM de-

creases.

 When the DRAM hit rate is low, all DRAM cache organ-

izations perform equally in terms of bandwidth efficiency

as they are all constrained by NVM bandwidth, obscuring

differences in cache organization.

 When NVM bandwidth or the DRAM hit rate is very low,

the most cost-effective memory system should be used as

it has no negative impact on bandwidth efficiency.

 When NVM bandwidth is high enough, more bandwidth-

efficient DRAM cache organizations should be consid-

ered as they deliver higher bandwidths at high hit rates.

 NVM write bandwidth has a significant impact on deliv-

ered read bandwidth since it affects DRAM utilization.

This motivates the need for conducting research on tech-

niques to minimize write bandwidth demand on NVM.

Our models can be extended in many aspects. Hit-miss pre-

dictors in the processor can affect both access latency and

DRAM bandwidth efficiency. We plan to extend our models

to include predictors. In addition, we plan to include separate

DRAM hit rates for reads and writes in our models in order to

more accurately characterize application behaviors.

Acknowledgments

We would like to thank Alex Breslow and Gabriel Loh for

their comments. AMD, the AMD Arrow logo, and combina-

tions thereof are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identifi-

cation purposes only and may be trademarks of their respec-

tive companies.

References

[1] “High bandwidth memory (HBM) DRAM JESD235,” 2013.

[Online]. Available: https://www.jedec.org/standards-docu-

ments/docs/jesd235

[2] “Hybrid memory cube specification 2.0,” 2014. [Online].

Available: http://hybridmemorycube.org/files/SiteDown-

loads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Pub-

lic.pdf

[3] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and

S. W. Keckler, “Page placement strategies for GPUs within

heterogeneous memory systems,” in ASPLOS, 2015, pp. 607–

618.

[4] E. Bolotin, D. Nellans, O. Villa, M. O’Connor, A. Ramirez,

and S. Keckler, “Designing efficient heterogeneous memory

architectures,” IEEE Micro, vol. 35, no. 4, pp. 60–68, July

2015.

[5] D. Callahan, J. Cocke, and K. Kennedy, “Estimating interlock

and improving balance for pipelined architectures,” J. of Par-

allel and Distributed Computing, vol. 5, no. 4, pp. 334–358,

1988.

[6] C. Chou, A. Jaleel, and M. Qureshi, “CAMEO: A two-level

memory organization with capacity of main memory and flex-

ibility of hardware-managed cache,” in Micro, 2014, pp. 1–12.

[7] ——, “BEAR: Techniques for mitigating bandwidth bloat in

gigascale DRAM caches,” in ISCA, 2015, pp. 198–210.

[8] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM

architecture increases density and performance,” in Symp. on

VLSI Technology (VLSIT), June 2012, pp. 87–88.

[9] D. Jevdjic, G. Loh, C. Kaynak, and B. Falsafi, “Unison cache:

A scalable and effective die-stacked DRAM cache,” in MI-

CRO, 2014, pp. 25–37.

[10] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM

caches for servers: Hit ratio, latency, or bandwidth? Have it all

with footprint cache,” in ISCA, 2013, pp. 404–415.

[11] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric sys-

tem interconnect design with hybrid memory cubes,” in

PACT, 2013, pp. 145–155.

[12] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. Lee,

“A fully associative, tagless DRAM cache,” in ISCA, 2015,

pp. 211–222.

[13] G. Loh and M. Hill, “Efficiently enabling conventional block

sizes for very large die-stacked DRAM caches,” in MICRO,

2011, pp. 454–464.

[14] ——, “Supporting very large DRAM caches with compound-

access scheduling and MissMap,” IEEE Micro, vol. 32, no. 3,

pp. 70–78, May 2012.

[15] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hotchips,

2011.

[16] M. Qureshi, M. Franceschini, A. Jagmohan, and L. Lastras,

“PreSET: Improving performance of phase change memories

by exploiting asymmetry in write times,” in ISCA, 2012, pp.

380–391.

[17] M. Qureshi and G. Loh, “Fundamental latency trade-off in ar-

chitecting DRAM caches: Outperforming impractical SRAM-

tags with a simple and practical design,” in MICRO, 2012, pp.

235–246.

[18] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A.

McKee, P. Radojkovic, and E. Ayguadé, “Another trip to the

wall: How much will stacked DRAM benefit HPC?” in Proc.

Intl. Symp. on Memory Systems (MEMSYS), 2015, pp. 31–36.

[19] D. Roberts, A. Farmahini-Farahani, K. Cheng, N. Hu, D. May-

hew, and M. Ignatowski, “NMI: A new memory interface to

enable innovation,” in Hotchips, 2015.

[20] A. Sodani, “Knights Landing: 2nd generation Intel "Xeon Phi"

processor,” in Hotchips, 2015.

[21] S. Williams, A. Waterman, and D. Patterson, “Roofline: An

insightful visual performance model for multicore architec-

tures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[22] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian,

T. Zhang, S. Yu, and Y. Xie, “Overcoming the challenges of

crossbar resistive memory architectures,” in HPCA, Feb 2015,

pp. 476–488.

[23] J. Yue and Y. Zhu, “Accelerating write by exploiting PCM

asymmetries,” in HPCA, Feb. 2013, pp. 282–293.

