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Abstract—The complexity of modern chips is rising and 
fundamental changes in system design are necessary. System-
on-a-Programmable-Chip (SOPC) concept is bringing a major 
revolution in the design of integrated circuits due to the 
flexibility it provides and the complexity it caters to. Particle 
Swarm Optimization (PSO) is a powerful function optimizer 
that is successfully used to solve problems in numerous fields. 
The main downside of PSO is that it has significant 
computation time because of sequential execution of software 
implementations. In this paper, an SOPC-based PSO 
framework is proposed. By implementing a hardware/software 
co-design of PSO, most of the computations can simultaneously 
be performed using hardware to reduce the computation time, 
while keeping the flexibility of software. The results indicate a 
speed-up of up to 100 times in the elapsed computation time. 

I. INTRODUCTION 
In the last few years, Field Programmable Logic Device 

(FPLD) manufacturers have used programmable logic as a 
medium to develop System-on-a-Programmable-Chip 
(SOPC). By combining logic, memory and configurable 
processor core, embedded processor Field-Programmable 
Gate Array (FPGA) solutions allow system designers to 
integrate an entire system on a single device. SOPC 
platforms are commonly employed due to their ease of 
implementation and highly customizable nature. There are 
FPGA devices which offer hard or soft integrated processor 
subsystems. These devices have the flexibility to integrate 
memory, peripherals and other intellectual property (IP) for 
SOPC designs.  

Particle Swarm Optimization (PSO) [1] is one of the 
evolutionary computation techniques based on swarm 
intelligence. Like the other evolutionary computation 
techniques, PSO is a stochastic population-based search 
algorithm. In PSO, a potential solution, called a particle, 
represents a point in the search space which has a fitness 
value and a velocity. Each particle flies through the solution 
space of problem and adjust its flying velocity to search for 
the global optimum according to its own and social historical 
experiences. Many researchers are interested in this 
algorithm and it has been investigated from various 
perspectives [2]. However, PSO process as other heuristic 
algorithms is time consuming. For many real-world 
applications, PSO can run for days, even when it is executed 
on a high performance workstation. To reduce the execution 

time of heuristic algorithms, several methods have been 
offered, including parallel and/or distributed processing of 
these algorithms along with its hardware implementation [3]. 

Although different hardware approaches for genetic 
algorithm have been proposed [4], a few hardware 
implementations of PSO have been reported in the literature. 
Kokai et al. [5] have employed hardware implementation of 
PSO in FPGA for the employment with blind adaptation of 
the directional characteristic of array antennas. They have 
introduced multi-swarm architecture in which each single 
swarm optimizes only a single parameter of the application. 
However, they have not reported the hardware cost, achieved 
frequency, and also performance. 

Reynolds et al. [6] have implemented a modified particle 
swarm optimizer and neural network in FPGA. In their 
architecture, many of the computations are performed in 
parallel to reduce computation time compared to software 
implementation. They have employed two Xilinx 
XC2V6000 FPGAs. One FPGA was used for fitness function 
calculations, and the other was used for the particle swarm 
operations. At one hundred megahertz, their implementation 
was about sixty times faster than software implementation. 
Also, they have not reported the hardware cost. 

In this paper, we propose an SOPC-based asynchronous 
discrete PSO system to speed up its processing time. The 
proposed system consists of two sections: fitness evaluation 
in software and all other PSO elements in hardware. By 
using a software implementation for the fitness function we 
achieve a system in which the potential increasing 
complexity of the fitness function does not alter the structure 
of the system.  

The remaining sections are organized as follows:  Section 
II gives an overview of PSO and its components. The 
proposed system is described in Section III. Section IV 
describes the SOPC implementation and explains the 
experimental results. Section V concludes the paper. 

II. PARTICLE SWARM OPTIMIZATION 

A. Particle Swarm Optimizer Algorithm 
The particle swarm optimizer is a swarm intelligence 
algorithm that emulates a flock searching over the solution 
landscape by sampling points and converging the swarm on 
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the most promising regions. A particle moves through the 
solution space along a trajectory defined by its velocity. A 
particle consists of five components. The first component, x, 
is a vector that contains the current location in the solution 
space. fitness is the quality of the solution represented by the 
vector x, as computed by a problem-specific evaluation 
function. v is a vector that contains the velocity for each 
vector of x. The velocity of an x vector is the amount value 
the corresponding x value will change in the next iteration. 
fitnessp is the fitness value of the best solution yet 
encountered by a particular particle. Each particle keeps 
track of its coordinates in the problem space, which are 
associated with the best solution it has achieved so far. 
Finally, pbest is a copy of x for the location of the best 
solution yet encountered by a particular particle. 

Each particle is also aware of gbest, the particle reporting 
the current best fitness in the neighborhood for any given 
iteration, and fitnessg which is the fitness value of gbest. 
Moreover, the entire swarm may be considered a single 
neighborhood, and gbest applies globally.  

The heart of PSO algorithm is the process by which v is 
modified, forcing the particles to search through the most 
promising areas of the solution space again and again. At 
each iteration, the previous values of v constitute the particle 
momentum. PSO concept consists of velocity changes of 
each particle toward its pbest and gbest locations. 
Acceleration is weighted by a random term, with separate 
random numbers being generated for acceleration toward 
pbest and gbest locations. This randomness insures that the 
step size will be varying to avoid aliasing, where the particle 
endlessly follows the exact same path. The modified velocity 
and location of each individual particle can be calculated 
using the current velocity and the distance from pbestid and 
gbestd, as shown in the following equations. 
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where k

idx  is the current location vector of the particle i at 
the iteration k, which has k

idv  as the velocity vector. This 
velocity vector satisfies 

maxmin VvV k
id ≤≤ . Besides, there are five 

parameters that should be defined, w is the inertia weight 
factor, c1 and c2 are acceleration constants and r1 and r2 are 
uniform random numbers between 0 and 1.  

B. Asynchronous Particle Swarm Optimization 
The main difference between synchronous and 

asynchronous PSO concepts is the method used to update 
particle locations and velocities. Synchronous PSO updates 
particles locations and velocities at the end of every iteration. 
In contrast, Asynchronous PSO updates particle locations 
and velocities continuously based on currently available 
information. Synchronous PSO requires a synchronization 
point (calculation of all fitness values) before continuing to 
the next iteration.  

C. Discrete Particle Swarm Algorithm  
The original PSO algorithm can only optimize problems 

in which the elements of the solution are continuous real 
numbers. Nevertheless, many practical engineering problems 
are formulated as discrete optimization problems. Discrete 
particle swarm optimization [7] can be obtained by replacing 
(2) with (3). 

if (rand < )( 1+k
idvS ) then 1+k

idx =1; 

   else 1+k
idx =0; (3), 

where S(v) is a sigmoid limiting transformation function 
S(v) = 1 / ( 1 + e-v ), and rand is a random number selected 
from a uniform distribution in [0.0, 1.0]. 

III. SOPC-BASED PSO FRAMEWORK 
In this section, an asynchronous version of discrete PSO 

system has been proposed. We have implemented discrete 
PSO, since it is more agreeable to a hardware 
implementation despite its higher difficulty in software 
implementation due to demands of more random numbers. 
Hardware implementation of asynchronous PSO eliminates 
the demands of synchronization and multiple port memories. 
Also, the system utilizes hardware logics efficiently, and area 
cost is reduced.  

In order to save area on the chip, some modifications to 
PSO are made. The simplest modification of the update 
equations is to use powers of two for the bias constants. This 
way, instead of using a slower and larger multiplier, a simple 
right shift is used. For this particle swarm implementation, 
the pbest and gbest bias constant was set to 1/64. This is a 
right shift of six bits.  

SOPC-based PSO framework consists of two major 
segments. One is software implementation of the fitness 
function using an embedded processor, and another is 
hardware implementation of PSO operations. The proposed 
system and interconnections of different blocks are depicted 
in Fig. 1. Important parameters of the design are the bit-
width for particle location and the bit-width for the particle 
velocity. These parameters are specified in the synthesis 
time. Increasing the bit-width of particles or increasing the 
number of particles does not increase the run-time of this 
hardware-based algorithm. The only limiting factor is the 
available area on the chip. 

As shown in Fig. 1, there are four separate memories, 
two particle update blocks, random number generator (RNG) 
blocks, a determination block and an embedded processor 
and its program memory. Particle location memory and 
particle velocity memory store values of location vector (x) 
and values of velocity vector (v) for each particle, 
respectively. Pbest fitness value memory and pbest location 
memory hold fitness value of pbest, and values of the best 
location (pbest vector) for each particle, respectively. Two 
particle update blocks are employed to process particle 
location and velocity continually. Gbest register holds the yet 
achieved solution of problem (gbest vector).  
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Figure 1.  The proposed SOPC-based PSO architecture. 

Here different blocks of the SOPC-based PSO 
architecture are described. Particle location update block 
feeds the embedded processor with updated location vectors. 
The embedded processor calculates the fitness of particles 
using software codes. Fitness evaluation is completely 
problem dependent and we have implemented it in software. 
Thus, the system can easily be adapted to solve different 
kinds of problems by loading new fitness functions into the 
program memory. The size of program memory depends on 
the software code utilization. 

Determination block compares the calculated fitness of 
current location with the stored old ones to update the fitness 
value, Pbest memories, and Gbest register in every 
calculation step. 

Particle velocity update block implements Equation (1) 
using hardware. Generating random numbers and 
multiplying numbers takes many clock cycles in every 
processor. These two operations take only two clock cycles 
in parallel implementation. At each step, updated particle 
location and velocity vectors are stored in particle location 
memory and particle velocity memory. 

Random Number Generator blocks have a prominent role 
in PSO hardware implementation. For instance, for 32-bit 
particles and one thousand particle updates, 96,000 random 
numbers are needed (excluding random numbers required in 
fitness evaluation). Generally, linear feedback shift registers 
(LFSR) or cellular automata are used to generate random 
numbers [8]. The hardware random numbers produced by 
LFSRs deliver enough performance in order to use in 
evolutionary computation [8]. Therefore, we have used 
LFSRs for generating random data. 

Initially, control unit sets the contents of particle location 
memory and particle velocity memory to random numbers 
using RNGs. Also, this unit generates control signals for all 
other blocks. This unit is composed of a state machine to 
track the operations of the algorithm. For clarity, this unit has 
been omitted from Fig. 1.  

Particle location update block calculates new particle 
location according to Equation (3) in two clock cycles. The 

calculated results are passed to particle location memory and 
embedded processor. Particle location vector is indicated by 
a comparison between generated random number and 
velocity vector of that location. Several instances of this 
block are inserted in parallel to update particle location 
simultaneously. 

IV. HARDWARE IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

In order to measure the SOPC-based system 
performance, we have simulated and implemented this 
system on an Altera® Stratix 1S10ES Development Kit (chip 
EP1S10F780C6ES). All additional blocks are developed 
using Verilog hardware description language.  

We have demonstrated the effectiveness of our SOPC 
implementation of PSO on three test functions. Experiments 
are performed to compare the different features of the SOPC-
based PSO such as performance with the features of the 
software implementation of PSO. The utilized test functions 
are the OneMax function and two f1 and f2 functions of the 
standard DeJong Test Suite [9] with binary encoding. The 
algebraic forms of these functions are given in Table I. The 
first column represents the functions, and the second column 
shows the value range of particles in each function. The 
number of bits for each particle is shown in the third column.  

To compare the performance of asynchronous PSO and 
synchronous PSO, the convergence rates for these test 
problems have been evaluated using software. In all of the 
experiments, the PSO algorithms use parameter values w=1, 
c1=c2=2, and the swarm size (number of particles) is 10. As 
shown in Table II, for DeJong f1 problem, synchronous PSO 
outperforms asynchronous PSO. Asynchronous PSO 
performs slightly better than synchronous PSO for other 
problems. Asynchronous PSO is well suited for the hardware 
implementation due to its ability of continually updating 
particles, whereas synchronous PSO entails a 
synchronization point before advancing the next iteration. 
The synchronization point causes some blocks to stand idly 
by in hardware implementations, considerably increasing 
elapsed time. 

For our system, one Nios II/f [10] is employed to 
evaluate fitness values. The maximum operating frequency 
of the system for all the problems is almost 50 MHz. In all 
the problems, PSO process terminates after 100 iterations. 

Table III summarizes memory bits and logic cells needed 
for different implementations of asynchronous discrete PSO. 
In the SOPC-based implementation, software program of the 
test function is prepared with C language and it is run on the 
processor. Memory bits of the software part are related to 
software codes of the fitness function loaded into the 
program memory of the Nios processor, and the number of 
memory bits of the hardware part is determined by the 
required memory bits to hold PSO vectors and values. The 
used logic cells consist of the hardware area of the Nios 
processor and PSO specific blocks. In software 
implementation, C program codes of complete asynchronous 
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PSO algorithm besides the fitness function are loaded into 
the program memory of the Nios processor. The number of 
used logic cells determines the Nios processor consumed 
area. 

TABLE I.  TEST SUITE 

Function Search Range Dimen
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∑
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TABLE II.  ACHIEVED RESULTS FOR TEST FUNCTIONS. VALUES ARE 
THE AVERAGE FITNESS VALUES OF 100 TRIALS AND 100 ITERATIONS (LESS 

IS BETTER) 

PSO Algorithm OneMax DeJong f1 DeJong f2 
Synchronous 0.194 0.389 6.627 
Asynchronous 0.168  0.491 5.299 

 

Table IV shows the average processing times for 
different asynchronous PSO implementations. The second 
column shows the elapsed time of the software 
implementation of PSO written in MATLAB and 
implemented on a single 3-GHz Pentium IV processor, 1-GB 
RAM, and Windows XP Pro OS. The third and fourth 
columns represent the elapsed times of the software 
implementation of PSO on Nios processor and SOPC-based 
implementation of PSO, respectively. In all of the 
implementations, DeJong problems take more clock cycles 
than OneMax problem, because fitness function of OneMax 
problem is simple. The major bottleneck of the SOPC-based 
system is fitness evaluation in Nios II processor. Although it 
is possible to design specific hardware for fitness evaluation 
(instead of software implementation) for simple functions to 
speed up the system, modularity and flexibility are lost and 
also this makes the design more cumbersome.  

According to Table IV, in the SOPC-based 
implementation, evolution of 100 iterations of DeJong f2 
problem at 50 MHz is just under 210 ms, i.e., more than 
5000 fitness evaluations are made every second. The 
improvement ratio of SOPC-based PSO over software PSO 
on Nios processor is up to 100 times and that over the 
implementation on Pentium processor is up to 11 times. 

TABLE III.  USED MEMORY BITS AND LOGIC CELLS IN 
ASYNCHRONOUS DISCRETE PSO IMPLEMENTATIONS 

Problem Implementation 
Type 

Memory Bits LCs 

SOPC-based 52K + 4.2K (SW + HW) 6213 OneMax Software on Nios 360K  2850 
SOPC-based 160K + 3.9K (SW + HW) 5842 DeJong f1 Software on Nios  448K 2850 
SOPC-based 168K + 3.2K (SW + HW) 4787 DeJong f2  Software on Nios  448K  2850 

TABLE IV.  ELAPSED TIMES OF SOFTWARE AND SOPC-BASED 
REALIZATIONS OF ASYNCHRONOUS DISCRETE PSO 

Problem Software PSO 
on Pentium IV 

Software PSO on 
Nios (50 MHz) 

SOPC-based 
PSO (50 MHz) 

OneMax 70 ms 1042 ms 10.1 ms 
DeJong f1 2333 ms 9302 ms 212 ms 
DeJong f2 1737 ms 8562 ms  209 ms 

 

PSO highly depends on random numbers, and one reason 
for the achieved improvement is that generating random 
numbers using a software program requires many clock 
cycles. Moreover, software implementations cannot take 
advantage of the inherent parallelism of PSO algorithm since 
instructions are executed serially. While in hardware, most 
computations of particles are performed in parallel. 

V. CONCLUSION 
In this paper, we have proposed an embedded 

implementation for discrete PSO using System-on-a-
Programmable-Chip (SOPC) concept. With respect to the 
optimization function, the calculation time for each iteration 
is distinct. Thus, this architecture can be used in real-time 
PSO applications. The proposed realization operates up to 
100 times faster than its corresponding software 
implementation. The experimental results confirm the 
benefits of our mixed solution in comparison to having an 
exclusively software or hardware implemented system. Our 
solution provides a tradeoff between the speed of a full-
hardware solution and the flexibility of a pure software 
implementation.  
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