
SOPC-Based Architecture for Discrete Particle
Swarm Optimization

Amin Farmahini-Farahani, Sied Mehdi Fakhraie, Saeed Safari
School of Electrical and Computer Engineering, University of Tehran

a.farmahini@ece.ut.ac.ir, {fakhraie, saeed}@ut.ac.ir

Abstract—The complexity of modern chips is rising and
fundamental changes in system design are necessary. System-
on-a-Programmable-Chip (SOPC) concept is bringing a major
revolution in the design of integrated circuits due to the
flexibility it provides and the complexity it caters to. Particle
Swarm Optimization (PSO) is a powerful function optimizer
that is successfully used to solve problems in numerous fields.
The main downside of PSO is that it has significant
computation time because of sequential execution of software
implementations. In this paper, an SOPC-based PSO
framework is proposed. By implementing a hardware/software
co-design of PSO, most of the computations can simultaneously
be performed using hardware to reduce the computation time,
while keeping the flexibility of software. The results indicate a
speed-up of up to 100 times in the elapsed computation time.

I. INTRODUCTION
In the last few years, Field Programmable Logic Device

(FPLD) manufacturers have used programmable logic as a
medium to develop System-on-a-Programmable-Chip
(SOPC). By combining logic, memory and configurable
processor core, embedded processor Field-Programmable
Gate Array (FPGA) solutions allow system designers to
integrate an entire system on a single device. SOPC
platforms are commonly employed due to their ease of
implementation and highly customizable nature. There are
FPGA devices which offer hard or soft integrated processor
subsystems. These devices have the flexibility to integrate
memory, peripherals and other intellectual property (IP) for
SOPC designs.

Particle Swarm Optimization (PSO) [1] is one of the
evolutionary computation techniques based on swarm
intelligence. Like the other evolutionary computation
techniques, PSO is a stochastic population-based search
algorithm. In PSO, a potential solution, called a particle,
represents a point in the search space which has a fitness
value and a velocity. Each particle flies through the solution
space of problem and adjust its flying velocity to search for
the global optimum according to its own and social historical
experiences. Many researchers are interested in this
algorithm and it has been investigated from various
perspectives [2]. However, PSO process as other heuristic
algorithms is time consuming. For many real-world
applications, PSO can run for days, even when it is executed
on a high performance workstation. To reduce the execution

time of heuristic algorithms, several methods have been
offered, including parallel and/or distributed processing of
these algorithms along with its hardware implementation [3].

Although different hardware approaches for genetic
algorithm have been proposed [4], a few hardware
implementations of PSO have been reported in the literature.
Kokai et al. [5] have employed hardware implementation of
PSO in FPGA for the employment with blind adaptation of
the directional characteristic of array antennas. They have
introduced multi-swarm architecture in which each single
swarm optimizes only a single parameter of the application.
However, they have not reported the hardware cost, achieved
frequency, and also performance.

Reynolds et al. [6] have implemented a modified particle
swarm optimizer and neural network in FPGA. In their
architecture, many of the computations are performed in
parallel to reduce computation time compared to software
implementation. They have employed two Xilinx
XC2V6000 FPGAs. One FPGA was used for fitness function
calculations, and the other was used for the particle swarm
operations. At one hundred megahertz, their implementation
was about sixty times faster than software implementation.
Also, they have not reported the hardware cost.

In this paper, we propose an SOPC-based asynchronous
discrete PSO system to speed up its processing time. The
proposed system consists of two sections: fitness evaluation
in software and all other PSO elements in hardware. By
using a software implementation for the fitness function we
achieve a system in which the potential increasing
complexity of the fitness function does not alter the structure
of the system.

The remaining sections are organized as follows: Section
II gives an overview of PSO and its components. The
proposed system is described in Section III. Section IV
describes the SOPC implementation and explains the
experimental results. Section V concludes the paper.

II. PARTICLE SWARM OPTIMIZATION

A. Particle Swarm Optimizer Algorithm
The particle swarm optimizer is a swarm intelligence
algorithm that emulates a flock searching over the solution
landscape by sampling points and converging the swarm on

1-4244-1378-8/07/$25.00 ©2007 IEEE. 1003

the most promising regions. A particle moves through the
solution space along a trajectory defined by its velocity. A
particle consists of five components. The first component, x,
is a vector that contains the current location in the solution
space. fitness is the quality of the solution represented by the
vector x, as computed by a problem-specific evaluation
function. v is a vector that contains the velocity for each
vector of x. The velocity of an x vector is the amount value
the corresponding x value will change in the next iteration.
fitnessp is the fitness value of the best solution yet
encountered by a particular particle. Each particle keeps
track of its coordinates in the problem space, which are
associated with the best solution it has achieved so far.
Finally, pbest is a copy of x for the location of the best
solution yet encountered by a particular particle.

Each particle is also aware of gbest, the particle reporting
the current best fitness in the neighborhood for any given
iteration, and fitnessg which is the fitness value of gbest.
Moreover, the entire swarm may be considered a single
neighborhood, and gbest applies globally.

The heart of PSO algorithm is the process by which v is
modified, forcing the particles to search through the most
promising areas of the solution space again and again. At
each iteration, the previous values of v constitute the particle
momentum. PSO concept consists of velocity changes of
each particle toward its pbest and gbest locations.
Acceleration is weighted by a random term, with separate
random numbers being generated for acceleration toward
pbest and gbest locations. This randomness insures that the
step size will be varying to avoid aliasing, where the particle
endlessly follows the exact same path. The modified velocity
and location of each individual particle can be calculated
using the current velocity and the distance from pbestid and
gbestd, as shown in the following equations.

)()(. 2211
1 k

idd
k
idid

k
id

k
id xgbestrcxpbestrcvwv −+−+=+ (1)

11 ++ += k
id

k
id

k
id vxx (2)

where k

idx is the current location vector of the particle i at
the iteration k, which has k

idv as the velocity vector. This
velocity vector satisfies

maxmin VvV k
id ≤≤ . Besides, there are five

parameters that should be defined, w is the inertia weight
factor, c1 and c2 are acceleration constants and r1 and r2 are
uniform random numbers between 0 and 1.

B. Asynchronous Particle Swarm Optimization
The main difference between synchronous and

asynchronous PSO concepts is the method used to update
particle locations and velocities. Synchronous PSO updates
particles locations and velocities at the end of every iteration.
In contrast, Asynchronous PSO updates particle locations
and velocities continuously based on currently available
information. Synchronous PSO requires a synchronization
point (calculation of all fitness values) before continuing to
the next iteration.

C. Discrete Particle Swarm Algorithm
The original PSO algorithm can only optimize problems

in which the elements of the solution are continuous real
numbers. Nevertheless, many practical engineering problems
are formulated as discrete optimization problems. Discrete
particle swarm optimization [7] can be obtained by replacing
(2) with (3).

if (rand <)(1+k
idvS) then 1+k

idx =1;

 else 1+k
idx =0; (3),

where S(v) is a sigmoid limiting transformation function
S(v) = 1 / (1 + e-v), and rand is a random number selected
from a uniform distribution in [0.0, 1.0].

III. SOPC-BASED PSO FRAMEWORK
In this section, an asynchronous version of discrete PSO

system has been proposed. We have implemented discrete
PSO, since it is more agreeable to a hardware
implementation despite its higher difficulty in software
implementation due to demands of more random numbers.
Hardware implementation of asynchronous PSO eliminates
the demands of synchronization and multiple port memories.
Also, the system utilizes hardware logics efficiently, and area
cost is reduced.

In order to save area on the chip, some modifications to
PSO are made. The simplest modification of the update
equations is to use powers of two for the bias constants. This
way, instead of using a slower and larger multiplier, a simple
right shift is used. For this particle swarm implementation,
the pbest and gbest bias constant was set to 1/64. This is a
right shift of six bits.

SOPC-based PSO framework consists of two major
segments. One is software implementation of the fitness
function using an embedded processor, and another is
hardware implementation of PSO operations. The proposed
system and interconnections of different blocks are depicted
in Fig. 1. Important parameters of the design are the bit-
width for particle location and the bit-width for the particle
velocity. These parameters are specified in the synthesis
time. Increasing the bit-width of particles or increasing the
number of particles does not increase the run-time of this
hardware-based algorithm. The only limiting factor is the
available area on the chip.

As shown in Fig. 1, there are four separate memories,
two particle update blocks, random number generator (RNG)
blocks, a determination block and an embedded processor
and its program memory. Particle location memory and
particle velocity memory store values of location vector (x)
and values of velocity vector (v) for each particle,
respectively. Pbest fitness value memory and pbest location
memory hold fitness value of pbest, and values of the best
location (pbest vector) for each particle, respectively. Two
particle update blocks are employed to process particle
location and velocity continually. Gbest register holds the yet
achieved solution of problem (gbest vector).

1004

Figure 1. The proposed SOPC-based PSO architecture.

Here different blocks of the SOPC-based PSO
architecture are described. Particle location update block
feeds the embedded processor with updated location vectors.
The embedded processor calculates the fitness of particles
using software codes. Fitness evaluation is completely
problem dependent and we have implemented it in software.
Thus, the system can easily be adapted to solve different
kinds of problems by loading new fitness functions into the
program memory. The size of program memory depends on
the software code utilization.

Determination block compares the calculated fitness of
current location with the stored old ones to update the fitness
value, Pbest memories, and Gbest register in every
calculation step.

Particle velocity update block implements Equation (1)
using hardware. Generating random numbers and
multiplying numbers takes many clock cycles in every
processor. These two operations take only two clock cycles
in parallel implementation. At each step, updated particle
location and velocity vectors are stored in particle location
memory and particle velocity memory.

Random Number Generator blocks have a prominent role
in PSO hardware implementation. For instance, for 32-bit
particles and one thousand particle updates, 96,000 random
numbers are needed (excluding random numbers required in
fitness evaluation). Generally, linear feedback shift registers
(LFSR) or cellular automata are used to generate random
numbers [8]. The hardware random numbers produced by
LFSRs deliver enough performance in order to use in
evolutionary computation [8]. Therefore, we have used
LFSRs for generating random data.

Initially, control unit sets the contents of particle location
memory and particle velocity memory to random numbers
using RNGs. Also, this unit generates control signals for all
other blocks. This unit is composed of a state machine to
track the operations of the algorithm. For clarity, this unit has
been omitted from Fig. 1.

Particle location update block calculates new particle
location according to Equation (3) in two clock cycles. The

calculated results are passed to particle location memory and
embedded processor. Particle location vector is indicated by
a comparison between generated random number and
velocity vector of that location. Several instances of this
block are inserted in parallel to update particle location
simultaneously.

IV. HARDWARE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In order to measure the SOPC-based system
performance, we have simulated and implemented this
system on an Altera® Stratix 1S10ES Development Kit (chip
EP1S10F780C6ES). All additional blocks are developed
using Verilog hardware description language.

We have demonstrated the effectiveness of our SOPC
implementation of PSO on three test functions. Experiments
are performed to compare the different features of the SOPC-
based PSO such as performance with the features of the
software implementation of PSO. The utilized test functions
are the OneMax function and two f1 and f2 functions of the
standard DeJong Test Suite [9] with binary encoding. The
algebraic forms of these functions are given in Table I. The
first column represents the functions, and the second column
shows the value range of particles in each function. The
number of bits for each particle is shown in the third column.

To compare the performance of asynchronous PSO and
synchronous PSO, the convergence rates for these test
problems have been evaluated using software. In all of the
experiments, the PSO algorithms use parameter values w=1,
c1=c2=2, and the swarm size (number of particles) is 10. As
shown in Table II, for DeJong f1 problem, synchronous PSO
outperforms asynchronous PSO. Asynchronous PSO
performs slightly better than synchronous PSO for other
problems. Asynchronous PSO is well suited for the hardware
implementation due to its ability of continually updating
particles, whereas synchronous PSO entails a
synchronization point before advancing the next iteration.
The synchronization point causes some blocks to stand idly
by in hardware implementations, considerably increasing
elapsed time.

For our system, one Nios II/f [10] is employed to
evaluate fitness values. The maximum operating frequency
of the system for all the problems is almost 50 MHz. In all
the problems, PSO process terminates after 100 iterations.

Table III summarizes memory bits and logic cells needed
for different implementations of asynchronous discrete PSO.
In the SOPC-based implementation, software program of the
test function is prepared with C language and it is run on the
processor. Memory bits of the software part are related to
software codes of the fitness function loaded into the
program memory of the Nios processor, and the number of
memory bits of the hardware part is determined by the
required memory bits to hold PSO vectors and values. The
used logic cells consist of the hardware area of the Nios
processor and PSO specific blocks. In software
implementation, C program codes of complete asynchronous

1005

PSO algorithm besides the fitness function are loaded into
the program memory of the Nios processor. The number of
used logic cells determines the Nios processor consumed
area.

TABLE I. TEST SUITE

Function Search Range Dimen
sion

∑
=

==
32

1
32,)(

i
i nxxOneMax {0, 1} 32

3,)(
1

2
1 ==∑

=

nxxf
n

i
i

[−5.12, 5.12) 30

2
1

2
2

2
12)1()(100)(xxxxf −+−= [−2.048, 2.048) 24

TABLE II. ACHIEVED RESULTS FOR TEST FUNCTIONS. VALUES ARE
THE AVERAGE FITNESS VALUES OF 100 TRIALS AND 100 ITERATIONS (LESS

IS BETTER)

PSO Algorithm OneMax DeJong f1 DeJong f2
Synchronous 0.194 0.389 6.627
Asynchronous 0.168 0.491 5.299

Table IV shows the average processing times for
different asynchronous PSO implementations. The second
column shows the elapsed time of the software
implementation of PSO written in MATLAB and
implemented on a single 3-GHz Pentium IV processor, 1-GB
RAM, and Windows XP Pro OS. The third and fourth
columns represent the elapsed times of the software
implementation of PSO on Nios processor and SOPC-based
implementation of PSO, respectively. In all of the
implementations, DeJong problems take more clock cycles
than OneMax problem, because fitness function of OneMax
problem is simple. The major bottleneck of the SOPC-based
system is fitness evaluation in Nios II processor. Although it
is possible to design specific hardware for fitness evaluation
(instead of software implementation) for simple functions to
speed up the system, modularity and flexibility are lost and
also this makes the design more cumbersome.

According to Table IV, in the SOPC-based
implementation, evolution of 100 iterations of DeJong f2
problem at 50 MHz is just under 210 ms, i.e., more than
5000 fitness evaluations are made every second. The
improvement ratio of SOPC-based PSO over software PSO
on Nios processor is up to 100 times and that over the
implementation on Pentium processor is up to 11 times.

TABLE III. USED MEMORY BITS AND LOGIC CELLS IN
ASYNCHRONOUS DISCRETE PSO IMPLEMENTATIONS

Problem Implementation
Type

Memory Bits LCs

SOPC-based 52K + 4.2K (SW + HW) 6213 OneMax Software on Nios 360K 2850
SOPC-based 160K + 3.9K (SW + HW) 5842 DeJong f1 Software on Nios 448K 2850
SOPC-based 168K + 3.2K (SW + HW) 4787 DeJong f2 Software on Nios 448K 2850

TABLE IV. ELAPSED TIMES OF SOFTWARE AND SOPC-BASED
REALIZATIONS OF ASYNCHRONOUS DISCRETE PSO

Problem Software PSO
on Pentium IV

Software PSO on
Nios (50 MHz)

SOPC-based
PSO (50 MHz)

OneMax 70 ms 1042 ms 10.1 ms
DeJong f1 2333 ms 9302 ms 212 ms
DeJong f2 1737 ms 8562 ms 209 ms

PSO highly depends on random numbers, and one reason
for the achieved improvement is that generating random
numbers using a software program requires many clock
cycles. Moreover, software implementations cannot take
advantage of the inherent parallelism of PSO algorithm since
instructions are executed serially. While in hardware, most
computations of particles are performed in parallel.

V. CONCLUSION
In this paper, we have proposed an embedded

implementation for discrete PSO using System-on-a-
Programmable-Chip (SOPC) concept. With respect to the
optimization function, the calculation time for each iteration
is distinct. Thus, this architecture can be used in real-time
PSO applications. The proposed realization operates up to
100 times faster than its corresponding software
implementation. The experimental results confirm the
benefits of our mixed solution in comparison to having an
exclusively software or hardware implemented system. Our
solution provides a tradeoff between the speed of a full-
hardware solution and the flexibility of a pure software
implementation.

REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

IEEE Intl. Conf. Neural Networks, vol. 4, 1995, pp. 1942-1948.
[2] X. Hu, Y. Shi, and R. Eberhart, “Recent advances in particle swarm,”

in Proc. IEEE Cong. Evolutionary Computation, 2004, pp. 90-97.
[3] Z. Konfrst, “Parallel genetic algorithms: Advances, computing trends,

applications and perspectives,” in Proc. IEEE Parallel and
Distributed Processing Symp., Apr. 2004, pp. 162-169.

[4] Z. Zhu, D. J. Mulvaney, and V. Chouliaras, “A novel genetic
algorithm designed for hardware implementation,” Intl. J. of
Computational Intelligence, vol. 3, no. 4, pp. 281-288, 2006.

[5] G. Kokai, T. Christ, and H. H. Frhauf, “Using hardware-based
particle swarm method for dynamic optimization of adaptive array
antennas,” in Proc. NASA/ESA Conf. Adaptive Hardware and
Systems, 2006, pp. 51-58.

[6] P. Reynolds, R. Duren, M. Trumbo, and R. Marks II, “FPGA
implementation of particle swarm optimization for inversion of large
neural networks,” in Proc. IEEE Swarm Intelligence Symp., June
2005, pp. 389-392.

[7] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Conf. on Syst., Man, and
Cybernetics, 1997, pp. 4104-4109.

[8] P. Martin, “An Analysis of Random Number Generators for a
Hardware Implementation of Genetic Programming using FPGAs and
Handel-C,” in Proc. Genetic and Evolutionary Computation Conf.,
July 2002, pp. 837-844.

[9] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, U. Michigan, Ann Arbor, 1975.

[10] Nios II Processor Reference Handbook, Altera Corp., May 2006.

1006

	MAIN MENU
	Front Matter
	Table of Contents
	Author Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

