
HW/SW Partitioning Using Discrete Particle Swarm
Amin Farmahini-Farahani

ECE Department
University of Tehran

Tehran 14395-515, IRAN

a.farmahini@ece.ut.ac.ir

Mehdi Kamal
CE Department

Sharif University of Technology
Tehran 11365-8639, IRAN

kamal@ce.sharif.edu

Sied Mehdi Fakhraie,
Saeed Safari
ECE Department

University of Tehran
Tehran 14395-515, IRAN

{fakhraie, saeed}@ut.ac.ir

ABSTRACT
Hardware/Software partitioning is one of the most important
issues of codesign of embedded systems, since the costs and
delays of the final results of a design will strongly depend on
partitioning. We present an algorithm based on Particle Swarm
Optimization to perform the hardware/software partitioning of a
given task graph for minimum cost subject to timing constraint.
By novel evolving strategy, we enhance the efficiency and
result’s quality of our partitioning algorithm in an acceptable run-
time. Also, we compare our results with those of Genetic
Algorithm on different task graphs. Experimental results show the
algorithm’s effectiveness in achieving the optimal solution of the
HW/SW partitioning problem even in large task graphs.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization.

General Terms
Algorithms, Design, Management.

Keywords
HW/SW Partitioning, Discrete Particle Swarm Optimization.

1. INTRODUCTION
Embedded system on chips (SoCs) consist of one or more
processors, which run some software, and another set of hardware
blocks implemented with application specific integrated circuit.
With the development of IC technology, the scale of modern
embedded systems becomes larger and the functions become
more complicated. Nowadays, embedded systems are used in a
wide range of industrial areas. Many commercial application
SoCs are made up of many processors, coprocessors, memories,
A/D, D/A, and IP cores.

For instance, in an embedded signal processing application, it is
common to use both application-specific hardware accelerator
circuits and general-purpose programmable units running
appropriate software.

This mixture is beneficial since hardware is usually much faster
than software, but it is also significantly more expensive.
Software solutions on the other hand are cheaper to create and to
maintain, but slow [20]. Hence, normally performance-critical
components of a system should be realized in hardware, and non-
critical components in software. By this way, a good tradeoff
between cost and performance can be achieved. The process of
simultaneous design of hardware and software components of a
system is known as codesign [17]. The problem consists of
finding a design of the system that meets the performance and
cost requirements.

However, this kind of system design creates some challenges.
One of the most critical steps of the design process is partitioning,
i.e. deciding which components of a system should be realized in
hardware and which ones in software. In this step, the system’s
operation is partitioned in smaller functional tasks, always having
in mind a set of constraints, and optimal cost-performance trade-
off is to be found. As the systems to design have become more
and more complex, research efforts have been undertaken to
automate partitioning as much as possible and HW/SW codesign
including partitioning is becoming a promising solution to modern
embedded system [10].

When the number of tasks is increased, finding the best
partitioning is becoming more difficult, so using search and
optimization methods are appropriate approaches. One group of
popular and powerful approaches for search and optimization
problems are Evolutionary Algorithms (EAs) [25], [26].
Nowadays, EAs are widely used in many engineering
applications. Particle Swarm Optimization (PSO) is a form of
evolutionary algorithm that was developed to simulate a
simplified social system [1]. A binary-valued PSO is developed
by the creators of PSO for using in binary search spaces [3]. In
this paper, we propose a discrete PSO technique for hardware
software partitioning application.

The remaining sections of this paper are organized as follows:
Section 2 reviews the related work so far. The chosen hardware
software partitioning algorithm is explained in Section 3. Section
4 gives an overview of the PSO and our methodology. The
achieved results are explained in Section 5. Finally, Section 6
concludes the paper and explains future works.

2. RELATED WORK
At present, there are limited numbers of algorithms for HW/SW
partitioning. Ref. [9] shows an algorithm to solve the joint
problem of partitioning and scheduling. It consists of basically
two local search heuristics: one for partitioning and one for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’07, March 11-13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003...$5.00.

scheduling. The two algorithms operate on the same graph, at the
same time. The objective of the technique is to minimize the
worst case latency of the task graph subject to the area constraints
on the architecture.

The earlier solutions have considered the HW/SW partitioning
problem as a mixed Integer Linear Program (ILP). This integer
program is a part of a two-phase heuristic optimization scheme
which aims at gaining better timing estimations using repeated
scheduling phases, and using the estimates in the partitioning
phases. This approach was slow and only practical for small
problems [11], [12], [13]. Arato et al. [20] presented an ILP-based
approach that works good for quite big systems.

Following this, Simulated Annealing (SA) was used as a non-
deterministic solution to reduce the computational cost of
codesign. Recently, Genetic Algorithms (GA) have been
employed to solve the problem [14]. Saha et al. [15] have
modeled partitioning problem as a Constraint Satisfaction
Problem (CSP), and have presented a GA-based approach to solve
the CSP. Ref. [17] has addressed the functional partitioning
problem using GA and have presented a comparative study with
SA and modified version of Fiduccia-Matheyse. Ref. [18] has
developed an Extended GA (EGA) that implemented a novel
selection method with function scaling, adaptive crossover and
mutation. They showed EGA outperforms Standard GA and it is
easier to apply due to fewer parameters. Ref. [19] has established
a HW/SW partitioning model based on system’s Basic Scheduling
Block (BSB) graph and propose a modified genetic partitioning
algorithm. Tan et al. [14] have proposed some performance
measures, test problem, and have given a comparison of some of
the prior work on GAs.

3. PARTICLE SWARM OPTIMIZATION

3.1 Particle Swarm Algorithm
The particle swarm optimization is a new population based
optimization algorithm, which has been proposed by Kennedy and
Eberhart in 1995 [1]. The PSO begins with a random population
and searches for fitness optimum just like the GA, but in the PSO
algorithm, particles will evolve by cooperation and competition
among the individuals themselves through generations instead of
using genetic operators [2].

Instead of using evolutionary operators to manipulate the
individual, as in other evolutionary computational algorithms,
each individual in PSO flies in the search space with a velocity
which is dynamically adjusted according to its own flying
experience and its companions' flying experience. Each individual
is treated as a volume-less particle in the d-dimensional search
space.

Each particle keeps track of its coordinates in the problem space,
which are associated with the best solution (fitness) it has
achieved so far. This value is called pbest. Another best value that
is tracked by the global version of the particle swarm optimizer is
the overall best value, and its location, obtained so far by any
particle in the population. This location is called gbest.

At each time step, the PSO algorithm consists of velocity changes
of each particle toward its pbest and gbest locations. Acceleration
is weighted by a random term, with separate random numbers

being generated for acceleration toward pbest and gbest locations.
The modified velocity and position of each individual particle can
be calculated using the current velocity and the distance from
pbestid to gbestd, as shown in the following equations:

)()(. 2211
1 k

idd
k
idid

k
id

k
id xgbestrcxpbestrcvwv −+−+=+ (1),

11 ++ += k
id

k
id

k
id vxx (2),

where k
idx is current position of individual i at iteration k, which

has velocity k
idv and maxmin

d
k
idd VvV ≤≤ and the pbest is the historical

best position of k
idx and gbest is the global best position in the

population’s history. Besides, there are five parameters should be
defined, w is the inertia weight factor, c1 and c2 are acceleration
constants and r1 and r2 are uniform random numbers between 0
and 1. The evolution process generally begins with random
distribution and evolutes as the Equations (1) and (2).

In the above procedures, the parameter Vmax determines the
resolution, or fitness, with which regions between the present
position and target position are searched. If Vmax is too high,
particles may fly past the good solutions. If Vmax is too small,
particles may not explore sufficiently beyond local solutions. In
previous experience with PSO, Vmax was often set at 10-20% of
the dynamic range of the variable on each dimension.

The constants c1 and c2 represent the weighting of the stochastic
acceleration terms that pull each particle toward pbest and gbest
positions. Low values allow particles to roam far from target
regions before being tugged back. On the other hand, high values
result in abrupt movements toward, or past, the target regions.
Hence, the acceleration constants c1 and c2 are often set to be 2.0
according to the past experiences.

Suitable selection of inertia weight w in Equation (3) provides a
balance between global and local exploration and exploitation,
and on average results in less iterations required to find a
sufficiently optimal solution. As originally developed, w often
decreases linearly from about 0.9 to 0.4 during a run. In general,
the inertia weight w is set according to the following equation:

iter
iter

wwww ×
−

−=
max

minmax
max

 (3),

where itermax is the maximum iteration number (generation) and
iter is the current iteration number.

3.2 Discrete Particle Swarm Algorithm
The original PSO algorithm can only optimize problems in which
the elements of the solution are continuous real numbers. Discrete
Particle Swarm Optimization can be obtained by replacing (2)
with (4).

if (rand() <)(1+k
idvS) then 1+k

idx =1;

 else 1+k
idx =0; (4)

where S(v) is a sigmoid limiting transformation function S(v) = 1 /
(1 + e-v), and rand() is a random number selected from a uniform
distribution in [0.0, 1.0]. Vmax in the discrete particle swarm is to
set a limit to further exploration after the population has

converged; in a sense, it could be said to control the ultimate
mutation rate or temperature of the bit vector. Note also that,
while high Vmax in the continuous-valued version increases the
range explored by a particle, the opposite occurs in the discrete
version; smaller values allow a higher mutation rate [3].

There have been some other explorations of Discrete PSO
techniques for discrete optimization. Yang et al. [4] developed an
algorithm which uses a different method to update velocity. Al-
kazemi and Mohan [5] used a technique which had particles
alternatively exploit personal best and neighborhood best
positions instead of simultaneously.

4. HARDWARE/SOFTWARE
PARTITIONING
Hardware software codesign is gaining importance with the
advent of CAD for embedded systems. An important phase in
such approaches is partitioning the design into hardware and
software implementation sets.

4.1 Problem Definition
We have addressed the problem of HW/SW partitioning using
PSO, with the aim of achieving a near optimal solution
efficiently. Let the sets S = {s1, s2,…, sn} and H = {h1, h2,…, hn}
denote the sets of all possible mappings of the tasks to SW and
HW respectively. There are four approaches for solving a
HW/SW partitioning [22]:

Q1: H0, S0 are the given constraints. Find a HW/SW partition P so
that Hp ≤ H0 and Sp ≤ S0 (hardware cost should be less than H0 and
execution time should be less than S0).

Q2: H0 is the given constraint. Find a HW/SW partition P so that
Hp ≤ H0 and Sp is minimal (hardware cost should be less than H0
and have the minimum execution time).

Q3: S0 is the given constraint. Find a HW/SW partition P so that
Sp≤S0 and Hp be minimal (execution time should be less than S0
and have minimum hardware cost).

Q4: Find a HW/SW partition P so that Sp and Hp be minimal
(minimum execution time and minimum hardware cost).

It is proved that Q1 is NP-Complete and Q2, Q3 are NP-hard [23].
Also, Q4 could be mapped to maximum-flow minimum-cut
problem [24] which has algorithms with O(n3) complexity. In this
paper, HW/SW partitioning is performed according to the Q3
type.

At the beginning, the problem should be modeled. There are three
predetermined characteristics for the model as follows:

Each software component has a time related to its execution time.
Software cost has been ignored under the supposition of having
enough available memory in system to accommodate the whole
implementation.

Each hardware component has a cost related to its hardware
demands such as area and power consumption and a time relative
to its execution time.

Only if two communicating components are mapped to different
contexts, their communication has an associated cost. Otherwise,
the expense of communication between them is negligible.

The partitioning formal problem would be expressed as follows:
“Given a set of tasks that together represent a design, the problem
is to find a partition of hardware and software implementations,
such that joining them constructs an equivalent system with a
minimal cost, while satisfying performance constraints.” Thus, we
want to determine which task should be implemented in hardware
and which in software in a manner that the overall design meets
cost and time constraints.

4.2 Problem Representation
To partition a design, first it must be mapped into a task graph.
Applications can be easily broken down into distinct tasks at a
coarse level of granularity and can be specified by a data-
dependence-based task graph.

The behavior of the design is presented to the partitioning
algorithm through a directed acyclic task graph. It represents the
high level system to be implemented. It consists of a set of nodes
and a set of edges and is represented by G = (V, E). Each node v
∈V denotes an operation (task) that has a specific cost of
implementation on HW and times of execution on HW (e.g.,
FPGA, ASIC) and SW platforms on general-purpose processor or
DSP chip. A node represents a single thread of execution and
cannot be preempted, i.e. it is atomic. Each task may be executed
in hardware or software. Each edge e ∈ E denotes data
dependencies between nodes. The edges in the data flow graph
have communication delays depending on the partitions in which
the two nodes incident on the edge are present [6], [8]. We have
used task graphs to investigate the correctness of algorithm and
run-time obtained by applying the PSO. A sample task graph is
shown in Figure 1.

Figure 1. Task graph of a design, values on the edges

represent communication costs.

To generate task graphs, we have used a task graph generator
called “Task Graph For Free, TGFF” [7]. TGFF generates
parameters for each task (HW and SW computation times, HW
implementation cost, etc.). We have modified TGFF source code
to generate applicable graphs.

The problem representation is one of the most important
parameters in the discrete PSO. Each particle is a string of bits

that illustrate a scheme of system partitioning. The length of
particle is equals to the number of tasks. Each bit defines that a
task of system must be implemented in hardware or developed
with software. An example of a particle is shown in Figure 2. In
bit string, zeros determine software development and ones
hardware implementation.

Figure 2. An example of a particle used in partitioning.

4.3 Partitioning Methodology
Figure 3 illustrates our overall methodology. The evaluation of
the fitness function (codesign cost & time estimator) needs some
information for its computations. The data is given by an input
file including this information: number of tasks, estimated
hardware execution time, hardware cost, software time of each
task, connections of the tasks with others and the associated
communication cost. Then, a task graph is generated using the
input file.

In the beginning, particles and corresponding velocities are
randomly generated. In each generation (iteration), fitness of each
particle is evaluated and an estimation of cost and time is
achieved, and pbest and gbest are determined. Then position and
velocity of each particle is updated using (1) and (4) respectively.
This process is resumed until termination condition is met.
Termination conditions are generation number limit, run-time
limit, or convergence of algorithm to a predefined fitness value.

Figure 3. Partitioning methodology.

4.4 Fitness Function
In order to evaluate an obtained solution, we need to know the
goodness of a partition, so we require some metrics. A metric is a
measurement of an attribute of the partitioned system. Usually
some of these metrics are combined and a fitness function
(codesign cost and time estimator) is obtained to guide the
algorithm through the optimization process. Some of the possible
metrics are economical cost, performance time, power
consumption, silicon area, number of pins, memory size, lines of
code, or communications cost.

In our partitioning, the focus is on performance (execution time),
area costs and communication costs between software and
hardware blocks. The main objective of our solution is
minimizing the system cost while maintaining the constraint
requirement for worst execution time. At the beginning, all source
nodes are traversed to the destination nodes using depth first
search (DFS) algorithm [21] and the worst execution time will be
determined. The fitness value is defined as infinite if the worst
execution time of each individual is bigger than the constraint
value. Otherwise, the fitness value is the cost of the resulting
system. An optimal solution will have a minimal cost and meet
the timing constraint. The pseudo code of the fitness function is as
below:

If (DFS(Graphi) <= Time_Constraint)
Fitness_Value = Communication_Cost +
Hardware_Cost;

Else
Fitness_Value = ∞;

5. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed method, we have
implemented the partitioning algorithm using PSO and GA and
then compared the results of the experiments. C programming
language is used for the implementation. To generate proper
random task graphs, we have modified TGFF program and made
some task graphs and experiments with the discrete PSO and GA
algorithm. Five task graphs have been generated with different
number of nodes and edges. We have entitled each task graph
with respect to its number of nodes and edges. The PSO and GA
parameters which we have used are shown in Table 1. We have
set GA parameters to achieve the best results. Uniform crossover,
multipoint mutation, and Tournament selection is used for
combination, mutation, and selection operations, respectively.

Table 1. Discrete PSO and GA parameters.

Discrete PSO GA

Parameter Value Parameter Value

Population 50 Population 50

Vmax 10 Crossover Rate 0.8

Vmin -10 Mutation Rate 0.02

c1, c2 2 Elitism 2

We have run PSO and GA on a computer with 1.7 GHz CPU and
512 MB RAM. Each algorithm has been run for 1000 generations

and the results are reported in Table 2. A time constraint is
defined for each graph, so the algorithm must find a solution, if
any, smaller than this time constraint. In this table, cost includes
hardware cost and communication cost and run-time denotes the
CPU time of running the algorithm.

Table 2. Discrete PSO and GA results over 1000 generations
and 20 trials.

 Discrete PSO GA

Nodes/
Edges

Time
constraint Cost

Run-
time
(ms)

Cost
Run-
time
(ms)

182/235 1000 368.7 4101 3240.5 4142

296/344 1700 1746.8 19014 8020.8 21419

402/500 500 662.4 9211 11153 10096

502/585 3300 9037 15861 21864 17236

992/1083 5500 15162 20440 33915.7 18189

The results show that the proposed method outperforms GA in all
cases. In particular for 402/500 nodes/edges task graph, our
proposed method has achieved better result with less than 6% of
GA cost. Run-time of task graphs in GA is moderately equals to
those of PSO, because run-time is mostly dedicated to fitness
function evaluation. However, for small task graphs, GA takes
more time than PSO for a fixed number of generations, and also,
in an exceptional case, in 992/1083 nodes/edges task graph, PSO
takes more time.

We have also evaluated the performance of the GA and the
discrete PSO in a different way in which a limited run-time is
assumed. The results are depicted in Figure 4. In this figure, for
smaller task graphs run-time is limited to 50 seconds and for
992/1083 nodes/edges task graph is limited to 100 seconds.

Figure 4 shows the discrete PSO can find better partitions than
GA in a fixed run time. Although GA has faster convergence and
achieves better performances in earlier generations, while discrete
PSO outperforms it at the end. For example, in 182/235
nodes/edges task graph, GA converges to a local optima solution.
However, discrete PSO explores the search spaces gradually and
can find optimal or near optimal solution, if the algorithm is given
enough time.

6. CONCLUSION
In this paper, we have proposed an approach for
hardware/software partitioning using discrete particle swarm
optimization. We have shown the discrete PSO performance is
competitive with those of GA and is able to find near optimal
solution for hardware/software partitioning. The proposed
solution finds better partitioning than GA in all cases. However,
in some cases, PSO takes more time for a fixed number of
generations. Experimental results show that the proposed method
not only can obtain low-cost solution, but can also avoid the
phenomenon of premature convergence of the GA, resulting in
robustness and effectiveness in solving partitioning of task graphs
with hundreds of nodes.

7. REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”

in Proc. IEEE Intl. Conf. Neural Networks, vol. 4, 1995, pp.
1942-1948.

[2] Y. Shi and R. Eberhart, “A modified particle swarm
optimizer,” in Proc. IEEE World Cong. on Computational
Intelligence, 1998, pp. 96-73.

[3] J. Kennedy and R. Eberhart, “A discrete binary version of
the particle swarm algorithm,” in Proc. IEEE Conf. Syst.,
Man, and Cybernetics, Orlando, FA, 1997, pp. 4104-4109.

[4] S. Yang, M. Wang, and L. Jiao, “A quantum particle swarm
optimization,” in Cong. Evolutionary Computing, vol. 1, Jun.
2004, pp. 320-324.

[5] B. Al-kazemi and C. K. Mohan, “Multi-phase discrete
particle swarm optimization,” in Proc. Intl. Workshop
Frontiers in Evolutionary Algorithms, 2002.

[6] V. Srinivasan, S. Radhakrishnan, and R. Vemuri, “Hardware
software partitioning with integrated hardware design space
exploration,” in Proc. Design Automation and Test in
Europe, 1998, pp. 28-35.

[7] R. P. Dick, D. I. Rhodes, and W. Wolf, “TGFF: task graphs
for free,” in Proc. Int. Workshop Hardware-Software
codesign, Mar. 1998, pp. 97-101.

[8] K. Bhasyam and K. Bazargan, “HW/SW codesign
incorporating edge delays using dynamic programming,” in
Proc. Euromicro Symp. Digital System Design, Sept. 2003.

[9] K. S. Chatha and R. Vemuri, “MAGELLAN: multiway
hardware software partitioning and scheduling for latency
minimization of hierarchical control-dataflow task graphs,”
in Proc. Intl. Conf. Hardware-Software Codesign and System
Synthesis, 2001.

[10] R. Ernst, “Codesign of embedded systems: status and
trends,” in Proc. IEEE Design & Test of Computers, 1998,
pp.45-54.

[11] W. Wolf, “A decade of hardware/software codesign,” in
Computer, pp. 38-43, Apr. 2003.

[12] R. Niemann and P. Marwedel, “An algorithm for
hardware/software partitioning using mixed integer linear
programming,” in Proc. Design Automation for Embedded
Systems, special issue: Partitioning Methods for Embedded
Systems, vol. 2, Mar. 1997, pp. 165-193.

[13] R. Niemann, “Hardware/software codesign for data flow
dominated embedded systems,” Kluwer Academic
Publishers, 1998.

[14] R. A. Wildman, J. I. Kramer, D. S. Weile, and P. Christie,
“Multi-objective optimization of interconnect geometry,” in
IEEE Trans. On Very Large Scale Integration Syst., pp. 15-
23, Feb. 2003.

[15] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary
algorithms for multi-objective optimization: performance
assessments and comparisons,” in Proc. Cong. Evo1utionary
Computation, May 2001, pp. 979-986.

[16] D. Saha, R. S. Mitra, and A. Basu, “Hardware software
partitioning using genetic algorithm,” in Proc. Int. Conf.
VLSI design, Jan. 1997, pp. 155-160.

992/1083 Nodes/Edges

40000

80000

120000

160000

200000

1 10 19 28 37 46 55 64 73 82 91 100
GA PSO

Figure 4. Average performances for the GA and the PSO against randomly generated task graphs. For each graph, the x axis

shows the run-time in second and the y axis represents the average fitness computed over 20 trials. In all graphs, a lower y value
represents partition with a lower cost.

[17] J. I. Hidalgo, and J. Lanchares, “Functional partitioning for

hardware/software codesign using genetic algorithm,” in
Proc. Euromicro Conf., 1997.

[18] M. J. W. Savage, Z. Salcic, G. Coghill, and G. Covic,
“Extended genetic algorithm for codesign optimization of
DSP syst. in FPGAs,” in Proc. IEEE Intl. Conf. Field-
Programmable Technology, Dec. 2004, pp. 291-294.

[19] Y. Zou, Z. Zhuang, and H. Chen, “HW/SW partitioning
based on genetic algorithm,” in Proc. Cong. Evolutionary
Computation, vol. 1, Jun. 2004, pp. 628-633.

[20] P. Arato, S. Juhasz, Z. A. Mann, A. A. Orban, and D. Papp,
“Hardware software partitioning in embedded system
design,” in Proc. Intelligent Signal Processing, Sept. 2003.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms, MIT Press, 2001.

[22] K. S. Chatha, and R. Vemuri, “Hardware-software
partitioning and pipelined scheduling of transformative
applications,” in IEEE Trans. Very Large Scale Integration
Syst., vol. 10, pp. 193–208, Jun. 2002.

[23] P. Arato, S. Juhasz, Z. A. Mann, A. A. Orban, and, D.
Papp, “Hardware software partitioning in embedded system
design,” in Proc. Intelegent Signal Processing, 2003.

[24] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli,
“Formal Models for Embedded System Design,” in IEEE
Design & Test of Computers, vol. 17, no. 2, Jun. 2000,
pp.14-27.

[25] A. E. Eiben, and J. E. Smith, Introduction to evolutionary
computing, Berlin Heildberg: Springer-Verlag, 2003.

[26] T. Mitchell, Machine learning, New York, McGraw-Hill,
1997.

182/235 Nodes/Edges

0

3000

6000

9000

1 8 15 22 29 36 43 50

296/344 Nodes/Edges

0

10000

20000

30000

40000

50000

1 8 15 22 29 36 43 50

402/500 Nodes/Edges

0

10000

20000

30000

40000

50000

1 8 15 22 29 36 43 50

502/585 Nodes/Edges

0

20000

40000

60000

80000

100000

1 8 15 22 29 36 43 50

