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ABSTRACT 
Hardware/Software partitioning is one of the most important 
issues of codesign of embedded systems, since the costs and 
delays of the final results of a design will strongly depend on 
partitioning. We present an algorithm based on Particle Swarm 
Optimization to perform the hardware/software partitioning of a 
given task graph for minimum cost subject to timing constraint. 
By novel evolving strategy, we enhance the efficiency and 
result’s quality of our partitioning algorithm in an acceptable run-
time. Also, we compare our results with those of Genetic 
Algorithm on different task graphs. Experimental results show the 
algorithm’s effectiveness in achieving the optimal solution of the 
HW/SW partitioning problem even in large task graphs.  

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization. 

General Terms 
Algorithms, Design, Management.  

Keywords 
HW/SW Partitioning, Discrete Particle Swarm Optimization. 

1. INTRODUCTION 
Embedded system on chips (SoCs) consist of one or more 
processors, which run some software, and another set of hardware 
blocks implemented with application specific integrated circuit. 
With the development of IC technology, the scale of modern 
embedded systems becomes larger and the functions become 
more complicated.  Nowadays, embedded systems are used in a 
wide range of industrial areas. Many commercial application 
SoCs are made up of many processors, coprocessors, memories, 
A/D, D/A, and IP cores.  

For instance, in an embedded signal processing application, it is 
common to use both application-specific hardware accelerator 
circuits and general-purpose programmable units running 
appropriate software.  

This mixture is beneficial since hardware is usually much faster 
than software, but it is also significantly more expensive. 
Software solutions on the other hand are cheaper to create and to 
maintain, but slow  [20]. Hence, normally performance-critical 
components of a system should be realized in hardware, and non-
critical components in software. By this way, a good tradeoff 
between cost and performance can be achieved. The process of 
simultaneous design of hardware and software components of a 
system is known as codesign  [17]. The problem consists of 
finding a design of the system that meets the performance and 
cost requirements.  

However, this kind of system design creates some challenges. 
One of the most critical steps of the design process is partitioning, 
i.e. deciding which components of a system should be realized in 
hardware and which ones in software. In this step, the system’s 
operation is partitioned in smaller functional tasks, always having 
in mind a set of constraints, and optimal cost-performance trade-
off is to be found. As the systems to design have become more 
and more complex, research efforts have been undertaken to 
automate partitioning as much as possible and HW/SW codesign 
including partitioning is becoming a promising solution to modern 
embedded system  [10]. 

When the number of tasks is increased, finding the best 
partitioning is becoming more difficult, so using search and 
optimization methods are appropriate approaches. One group of 
popular and powerful approaches for search and optimization 
problems are Evolutionary Algorithms (EAs)  [25],  [26]. 
Nowadays, EAs are widely used in many engineering 
applications. Particle Swarm Optimization (PSO) is a form of 
evolutionary algorithm that was developed to simulate a 
simplified social system  [1]. A binary-valued PSO is developed 
by the creators of PSO for using in binary search spaces  [3]. In 
this paper, we propose a discrete PSO technique for hardware 
software partitioning application. 

The remaining sections of this paper are organized as follows: 
Section 2 reviews the related work so far. The chosen hardware 
software partitioning algorithm is explained in Section 3. Section 
4 gives an overview of the PSO and our methodology. The 
achieved results are explained in Section 5. Finally, Section 6 
concludes the paper and explains future works. 

2. RELATED WORK 
At present, there are limited numbers of algorithms for HW/SW 
partitioning. Ref.  [9] shows an algorithm to solve the joint 
problem of partitioning and scheduling. It consists of basically 
two local search heuristics: one for partitioning and one for 
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scheduling. The two algorithms operate on the same graph, at the 
same time. The objective of the technique is to minimize the 
worst case latency of the task graph subject to the area constraints 
on the architecture. 

The earlier solutions have considered the HW/SW partitioning 
problem as a mixed Integer Linear Program (ILP). This integer 
program is a part of a two-phase heuristic optimization scheme 
which aims at gaining better timing estimations using repeated 
scheduling phases, and using the estimates in the partitioning 
phases. This approach was slow and only practical for small 
problems  [11],  [12],  [13]. Arato et al.  [20] presented an ILP-based 
approach that works good for quite big systems.  

Following this, Simulated Annealing (SA) was used as a non-
deterministic solution to reduce the computational cost of 
codesign. Recently, Genetic Algorithms (GA) have been 
employed to solve the problem  [14]. Saha et al.  [15] have 
modeled partitioning problem as a Constraint Satisfaction 
Problem (CSP), and have presented a GA-based approach to solve 
the CSP. Ref.  [17] has addressed the functional partitioning 
problem using GA and have presented a comparative study with 
SA and modified version of Fiduccia-Matheyse. Ref.  [18] has 
developed an Extended GA (EGA) that implemented a novel 
selection method with function scaling, adaptive crossover and 
mutation. They showed EGA outperforms Standard GA and it is 
easier to apply due to fewer parameters. Ref.  [19] has established 
a HW/SW partitioning model based on system’s Basic Scheduling 
Block (BSB) graph and propose a modified genetic partitioning 
algorithm. Tan et al.  [14] have proposed some performance 
measures, test problem, and have given a comparison of some of 
the prior work on GAs. 

3. PARTICLE SWARM OPTIMIZATION 

3.1 Particle Swarm Algorithm 
The particle swarm optimization is a new population based 
optimization algorithm, which has been proposed by Kennedy and 
Eberhart in 1995  [1]. The PSO begins with a random population 
and searches for fitness optimum just like the GA, but in the PSO 
algorithm, particles will evolve by cooperation and competition 
among the individuals themselves through generations instead of 
using genetic operators  [2]. 

Instead of using evolutionary operators to manipulate the 
individual, as in other evolutionary computational algorithms, 
each individual in PSO flies in the search space with a velocity 
which is dynamically adjusted according to its own flying 
experience and its companions' flying experience. Each individual 
is treated as a volume-less particle in the d-dimensional search 
space. 

Each particle keeps track of its coordinates in the problem space, 
which are associated with the best solution (fitness) it has 
achieved so far. This value is called pbest. Another best value that 
is tracked by the global version of the particle swarm optimizer is 
the overall best value, and its location, obtained so far by any 
particle in the population. This location is called gbest.  

At each time step, the PSO algorithm consists of velocity changes 
of each particle toward its pbest and gbest locations. Acceleration 
is weighted by a random term, with separate random numbers 

being generated for acceleration toward pbest and gbest locations. 
The modified velocity and position of each individual particle can 
be calculated using the current velocity and the distance from 
pbestid to gbestd, as shown in the following equations: 
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population’s history. Besides, there are five parameters should be 
defined, w is the inertia weight factor, c1 and c2 are acceleration 
constants and r1 and r2 are uniform random numbers between 0 
and 1. The evolution process generally begins with random 
distribution and evolutes as the Equations (1) and (2).  

In the above procedures, the parameter Vmax determines the 
resolution, or fitness, with which regions between the present 
position and target position are searched. If Vmax is too high, 
particles may fly past the good solutions. If Vmax is too small, 
particles may not explore sufficiently beyond local solutions. In 
previous experience with PSO, Vmax was often set at 10-20% of 
the dynamic range of the variable on each dimension. 

The constants c1 and c2 represent the weighting of the stochastic 
acceleration terms that pull each particle toward pbest and gbest 
positions. Low values allow particles to roam far from target 
regions before being tugged back. On the other hand, high values 
result in abrupt movements toward, or past, the target regions. 
Hence, the acceleration constants c1 and c2 are often set to be 2.0 
according to the past experiences. 

Suitable selection of inertia weight w in Equation (3) provides a 
balance between global and local exploration and exploitation, 
and on average results in less iterations required to find a 
sufficiently optimal solution. As originally developed, w often 
decreases linearly from about 0.9 to 0.4 during a run. In general, 
the inertia weight w is set according to the following equation: 
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where itermax is the maximum iteration number (generation) and 
iter is the current iteration number. 

3.2 Discrete Particle Swarm Algorithm 
The original PSO algorithm can only optimize problems in which 
the elements of the solution are continuous real numbers. Discrete 
Particle Swarm Optimization can be obtained by replacing (2) 
with (4). 

if (rand() < )( 1+k
idvS )  then 1+k

idx =1; 

   else 1+k
idx =0;  (4) 

where S(v) is a sigmoid limiting transformation function S(v) = 1 / 
( 1 + e-v ), and rand() is a random number selected from a uniform 
distribution in [0.0, 1.0]. Vmax in the discrete particle swarm is to 
set a limit to further exploration after the population has 



converged; in a sense, it could be said to control the ultimate 
mutation rate or temperature of the bit vector. Note also that, 
while high Vmax in the continuous-valued version increases the 
range explored by a particle, the opposite occurs in the discrete 
version; smaller values allow a higher mutation rate  [3]. 

There have been some other explorations of Discrete PSO 
techniques for discrete optimization. Yang et al.  [4] developed an 
algorithm which uses a different method to update velocity. Al-
kazemi and Mohan  [5] used a technique which had particles 
alternatively exploit personal best and neighborhood best 
positions instead of simultaneously. 

4. HARDWARE/SOFTWARE 
PARTITIONING 
Hardware software codesign is gaining importance with the 
advent of CAD for embedded systems. An important phase in 
such approaches is partitioning the design into hardware and 
software implementation sets. 

4.1 Problem Definition 
We have addressed the problem of HW/SW partitioning using 
PSO, with the aim of achieving a near optimal solution 
efficiently. Let the sets S = {s1, s2,…, sn} and H = {h1, h2,…, hn} 
denote the sets of all possible mappings of the tasks to SW and 
HW respectively. There are four approaches for solving a 
HW/SW partitioning  [22]:  

Q1: H0, S0 are the given constraints. Find a HW/SW partition P so 
that Hp ≤ H0 and Sp ≤ S0 (hardware cost should be less than H0 and 
execution time should be less than S0). 

Q2: H0 is the given constraint. Find a HW/SW partition P so that 
Hp ≤ H0 and Sp is minimal (hardware cost should be less than H0 
and have the minimum execution time). 

Q3: S0 is the given constraint. Find a HW/SW partition P so that 
Sp≤S0 and Hp be minimal (execution time should be less than S0 
and have minimum hardware cost). 

Q4: Find a HW/SW partition P so that Sp and Hp be minimal 
(minimum execution time and minimum hardware cost). 

It is proved that Q1 is NP-Complete and Q2, Q3 are NP-hard  [23]. 
Also, Q4 could be mapped to maximum-flow minimum-cut 
problem  [24] which has algorithms with O(n3) complexity. In this 
paper, HW/SW partitioning is performed according to the Q3 
type. 

At the beginning, the problem should be modeled. There are three 
predetermined characteristics for the model as follows:  

Each software component has a time related to its execution time. 
Software cost has been ignored under the supposition of having 
enough available memory in system to accommodate the whole 
implementation.  

Each hardware component has a cost related to its hardware 
demands such as area and power consumption and a time relative 
to its execution time. 

Only if two communicating components are mapped to different 
contexts, their communication has an associated cost. Otherwise, 
the expense of communication between them is negligible. 

The partitioning formal problem would be expressed as follows: 
“Given a set of tasks that together represent a design, the problem 
is to find a partition of hardware and software implementations, 
such that joining them constructs an equivalent system with a 
minimal cost, while satisfying performance constraints.” Thus, we 
want to determine which task should be implemented in hardware 
and which in software in a manner that the overall design meets 
cost and time constraints. 

4.2 Problem Representation 
To partition a design, first it must be mapped into a task graph. 
Applications can be easily broken down into distinct tasks at a 
coarse level of granularity and can be specified by a data-
dependence-based task graph. 

The behavior of the design is presented to the partitioning 
algorithm through a directed acyclic task graph. It represents the 
high level system to be implemented. It consists of a set of nodes 
and a set of edges and is represented by G = (V, E). Each node v 
∈V denotes an operation (task) that has a specific cost of 
implementation on HW and times of execution on HW (e.g., 
FPGA, ASIC) and SW platforms on general-purpose processor or 
DSP chip. A node represents a single thread of execution and 
cannot be preempted, i.e. it is atomic. Each task may be executed 
in hardware or software. Each edge e ∈  E denotes data 
dependencies between nodes. The edges in the data flow graph 
have communication delays depending on the partitions in which 
the two nodes incident on the edge are present  [6],  [8]. We have 
used task graphs to investigate the correctness of algorithm and 
run-time obtained by applying the PSO. A sample task graph is 
shown in Figure 1. 

 
Figure 1. Task graph of a design, values on the edges 

represent communication costs. 
 
To generate task graphs, we have used a task graph generator 
called “Task Graph For Free, TGFF”  [7]. TGFF generates 
parameters for each task (HW and SW computation times, HW 
implementation cost, etc.). We have modified TGFF source code 
to generate applicable graphs. 

The problem representation is one of the most important 
parameters in the discrete PSO. Each particle is a string of bits 



that illustrate a scheme of system partitioning. The length of 
particle is equals to the number of tasks. Each bit defines that a 
task of system must be implemented in hardware or developed 
with software. An example of a particle is shown in Figure 2. In 
bit string, zeros determine software development and ones 
hardware implementation. 

 
Figure 2. An example of a particle used in partitioning. 

4.3 Partitioning Methodology 
Figure 3 illustrates our overall methodology. The evaluation of 
the fitness function (codesign cost & time estimator) needs some 
information for its computations. The data is given by an input 
file including this information: number of tasks, estimated 
hardware execution time, hardware cost, software time of each 
task, connections of the tasks with others and the associated 
communication cost. Then, a task graph is generated using the 
input file.  

In the beginning, particles and corresponding velocities are 
randomly generated. In each generation (iteration), fitness of each 
particle is evaluated and an estimation of cost and time is 
achieved, and pbest and gbest are determined. Then position and 
velocity of each particle is updated using (1) and (4) respectively. 
This process is resumed until termination condition is met. 
Termination conditions are generation number limit, run-time 
limit, or convergence of algorithm to a predefined fitness value.  

 
Figure 3. Partitioning methodology. 

4.4 Fitness Function 
In order to evaluate an obtained solution, we need to know the 
goodness of a partition, so we require some metrics. A metric is a 
measurement of an attribute of the partitioned system. Usually 
some of these metrics are combined and a fitness function 
(codesign cost and time estimator) is obtained to guide the 
algorithm through the optimization process. Some of the possible 
metrics are economical cost, performance time, power 
consumption, silicon area, number of pins, memory size, lines of 
code, or communications cost. 

In our partitioning, the focus is on performance (execution time), 
area costs and communication costs between software and 
hardware blocks. The main objective of our solution is 
minimizing the system cost while maintaining the constraint 
requirement for worst execution time. At the beginning, all source 
nodes are traversed to the destination nodes using depth first 
search (DFS) algorithm  [21] and the worst execution time will be 
determined. The fitness value is defined as infinite if the worst 
execution time of each individual is bigger than the constraint 
value. Otherwise, the fitness value is the cost of the resulting 
system. An optimal solution will have a minimal cost and meet 
the timing constraint. The pseudo code of the fitness function is as 
below: 

If (DFS(Graphi)  <=  Time_Constraint)  
Fitness_Value = Communication_Cost + 
Hardware_Cost; 

Else 
Fitness_Value = ∞; 

5. EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed method, we have 
implemented the partitioning algorithm using PSO and GA and 
then compared the results of the experiments. C programming 
language is used for the implementation. To generate proper 
random task graphs, we have modified TGFF program and made 
some task graphs and experiments with the discrete PSO and GA 
algorithm. Five task graphs have been generated with different 
number of nodes and edges. We have entitled each task graph 
with respect to its number of nodes and edges. The PSO and GA 
parameters which we have used are shown in Table 1. We have 
set GA parameters to achieve the best results. Uniform crossover, 
multipoint mutation, and Tournament selection is used for 
combination, mutation, and selection operations, respectively.  

 

Table 1. Discrete PSO and GA parameters. 

Discrete PSO GA 

Parameter Value Parameter Value 

Population 50 Population 50 

Vmax 10 Crossover Rate 0.8 

Vmin -10 Mutation Rate 0.02 

c1, c2 2 Elitism 2 

 
We have run PSO and GA on a computer with 1.7 GHz CPU and 
512 MB RAM. Each algorithm has been run for 1000 generations 



and the results are reported in Table 2. A time constraint is 
defined for each graph, so the algorithm must find a solution, if 
any, smaller than this time constraint. In this table, cost includes 
hardware cost and communication cost and run-time denotes the 
CPU time of running the algorithm.  

 

Table 2. Discrete PSO and GA results over 1000 generations 
and 20 trials. 

 Discrete PSO GA 

Nodes/ 
Edges 

Time 
constraint Cost 

Run-
time 
(ms) 

Cost 
Run-
time 
(ms) 

182/235 1000 368.7 4101 3240.5 4142 

296/344 1700 1746.8 19014 8020.8 21419 

402/500 500 662.4 9211 11153 10096 

502/585 3300 9037 15861 21864 17236 

992/1083 5500 15162 20440 33915.7 18189 
 
The results show that the proposed method outperforms GA in all 
cases. In particular for 402/500 nodes/edges task graph, our 
proposed method has achieved better result with less than 6% of 
GA cost. Run-time of task graphs in GA is moderately equals to 
those of PSO, because run-time is mostly dedicated to fitness 
function evaluation. However, for small task graphs, GA takes 
more time than PSO for a fixed number of generations, and also, 
in an exceptional case, in 992/1083 nodes/edges task graph, PSO 
takes more time.  

We have also evaluated the performance of the GA and the 
discrete PSO in a different way in which a limited run-time is 
assumed. The results are depicted in Figure 4. In this figure, for 
smaller task graphs run-time is limited to 50 seconds and for 
992/1083 nodes/edges task graph is limited to 100 seconds. 

Figure 4 shows the discrete PSO can find better partitions than 
GA in a fixed run time. Although GA has faster convergence and 
achieves better performances in earlier generations, while discrete 
PSO outperforms it at the end. For example, in 182/235 
nodes/edges task graph, GA converges to a local optima solution. 
However, discrete PSO explores the search spaces gradually and 
can find optimal or near optimal solution, if the algorithm is given 
enough time. 

6. CONCLUSION 
In this paper, we have proposed an approach for 
hardware/software partitioning using discrete particle swarm 
optimization. We have shown the discrete PSO performance is 
competitive with those of GA and is able to find near optimal 
solution for hardware/software partitioning. The proposed 
solution finds better partitioning than GA in all cases. However, 
in some cases, PSO takes more time for a fixed number of 
generations. Experimental results show that the proposed method 
not only can obtain low-cost solution, but can also avoid the 
phenomenon of premature convergence of the GA, resulting in 
robustness and effectiveness in solving partitioning of task graphs 
with hundreds of nodes. 
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