
ARTICLE IN PRESS

Engineering Applications of Artificial Intelligence 23 (2010) 177–187
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

tory of S

Kargar A

fax: +9

E-m

s.vakili@

saeed@u
journal homepage: www.elsevier.com/locate/engappai
Parallel scalable hardware implementation of asynchronous discrete particle
swarm optimization
Amin Farmahini-Farahani �, Shervin Vakili, Sied Mehdi Fakhraie, Saeed Safari, Caro Lucas

School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran 14395-515, Iran
a r t i c l e i n f o

Article history:

Received 13 June 2007

Received in revised form

17 August 2009

Accepted 1 December 2009
Available online 12 January 2010

Keywords:

Evolutionary algorithms

Particle swarm optimization

Parallel architecture

Multiprocessing

Field programmable gate array (FPGA)

System-on-a-programmable-chip

Real-time applications
76/$ - see front matter & 2009 Elsevier Ltd. A

016/j.engappai.2009.12.001

esponding author. Silicon Intelligence and V

chool of Electrical and Computer Engineering

ve., Tehran 14395-515, Iran. Tel.: +98 21 88

8 21 88778690.

ail addresses: a.farmahini@ece.ut.ac.ir (A. Farm

ece.ut.ac.ir (S. Vakili), fakhraie@ut.ac.ir (S.M

t.ac.ir (S. Safari), lucas@ipm.ir (C. Lucas).
a b s t r a c t

This paper presents a novel hardware framework of particle swarm optimization (PSO) for various kinds

of discrete optimization problems based on the system-on-a-programmable-chip (SOPC) concept. PSO

is a new optimization algorithm with a growing field of applications. Nevertheless, similar to the other

evolutionary algorithms, PSO is generally a computationally intensive method which suffers from long

execution time. Hence, it is difficult to use PSO in real-time applications in which reaching a proper

solution in a limited time is essential. SOPC offers a platform to effectively design flexible systems with

a high degree of complexity. A hardware pipelined PSO (PPSO) Core is applied with which the required

computational operations of the algorithm are performed. Embedded processors have also been

employed to evaluate the fitness values by running programmed software codes. Applying the

subparticle method brings the benefit of full scalability to the framework and makes it independent of

the particle length. Therefore, more complex and larger problems can be addressed without modifying

the architecture of the framework. To speed up the computations, the optimization architecture is

implemented on a single chip master–slave multiprocessor structure. Moreover, the asynchronous

model of PSO gains parallel efficacy and provides an approach to update particles continuously. Five

benchmarks are exploited to evaluate the effectiveness and robustness of the system. The results

indicate a speed-up of up to 98 times over the software implementation in the elapsed computation

time. Besides, the PPSO Core has been employed for neural network training in an SOPC-based

embedded system which approves the system applicability for real-world applications.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary algorithms (EAs) are general-purpose search
algorithms used to solve difficult numerical optimization pro-
blems by simulating natural evolution over populations of
candidate solutions (Schwefel, 1981; Holland, 1975; Fogel,
1994; Bäck et al., 1997). Numerical optimization has been widely
used in engineering to solve a variety of NP-complete problems in
areas such as structural optimization, neural network training,
layout and scheduling problems, and control system analysis and
design (Fogel, 1991; Bäck et al., 1997; Zitzler et al., 2000; Freitas,
2002; Bäck, 1996; Deb, 2001; Dasgupta and Michalewicz, 1997).
Particle swarm optimization (PSO) is one of the emerging
computation techniques that was developed in 1995 (Kennedy
ll rights reserved.

LSI Signal Processing Labora-

, University of Tehran, North

013196;

ahini-Farahani),

. Fakhraie),
and Eberhart, 1995) as an evolutionary optimization methodology
over a complex solution space. PSO deals with the concept of
social interaction. It was inspired by the social behavior of bird
flocking or fish schooling. The PSO algorithm exploits the gathered
information of the particles in a swarm during their food-
searching activities and affects the trajectory of particles. Each
particle flies through the search space with a velocity which is
dynamically adjusted according to its own experience as well as
the experiences of its neighbors. Therefore, the particles have a
tendency to fly towards the better and better search area over the
progress of search process.

Like the other evolutionary computational techniques, PSO is a
derivative-free, stochastic and population-based search algorithm
which is initialized with a population (swarm) of random
solutions, called particles. Unlike the other evolutionary compu-
tation techniques, each particle in PSO is also associated with a
velocity.

The PSO-based approaches converge faster than genetic-algo-
rithm-(GA)-based techniques, and require less computational com-
plexity (Song and Gu, 2004). PSO has few parameters to adjust and
general values for these parameters are not devastative (Carlisle and
Dozier, 2001). Moreover, PSO is well suited to large-scale

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.12.001
mailto:a.farmahini@ece.ut.ac.ir
mailto:s.vakili@ece.ut.ac.ir
mailto:fakhraie@ut.ac.ir
mailto:saeed@ut.ac.ir
mailto:lucas@ipm.ir


ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187178
and complex optimization problems and is mainly used in
NP-complete problems (Hu et al., 2004). PSO is inherently parallel
since each particle can be considered as an independent agent
(Schutte et al., 2004). However, the iterative evolution process of
PSO like other heuristic algorithms is time consuming. For many
real-world applications, PSO can run for days, even when it is
executed on a high performance workstation. Computational
parallelism is an applicable approach to alleviate the problem of
the prolonged execution time of PSO.

Particle swarm engines are one instance of the bio-inspired
computing systems that is employed in the embedded systems.
Considering the real-time requirements for embedded applica-
tions, most embedded processor cores lack the performance to
run particle swarm computations or to emulate other bio-inspired
subsystems. Therefore, employing particle swarm in embedded
applications requires efficient custom hardware intellectual
property (IP) cores implemented for them (Mathew et al., 2004).
On the other hand, the competitive market of embedded systems
requires solutions that take shorter time in design, are cost-
efficient in development, have flexibility in utilization, expose
simplicity in integration, and exhibit reusability (Zhang et al.,
2001). A particle swarm IP core for embedded systems should
offer these capabilities as an off-the-shelf component. Never-
theless, obtaining an optimal solution (if exists) in real time for
large-scale problems is difficult. Since making a decision in a
limited time is vital for many practical problems, obtaining a
suitable solution in real time is much better than finding the
optimal solution off-line. Thus, our objective is to find appropriate
solution in a limited time.

The complexity of the modern chips is rising and fundamental
changes in system design are being more essential. The system-
on-a-programmable-chip (SOPC) concept is bringing a major
revolution in the design of integrated circuits, due to the
flexibility it provides and the complexity it caters to. The SOPC
embedded systems refer to the packaging of all the necessary
electronic functions, memory blocks, interfaces, microprocessors,
and so forth of different functions onto a single chip to form a
complete electronic system. SOPC brings the combination of
programmable logic and embedded processors, mixing software
and hardware. Thus, SOPC technology allows all of the various
components to be integrated together on a chip rather than
connecting those components on a circuit board to construct an
electronic system.

In this paper, an on-chip multiprocessing SOPC-based archi-
tecture has been proposed for high performance realization of the
particle swarm algorithm in embedded systems to speed up its
calculations. The proposed architecture can obtain high computa-
tional power due to its parallel processing architecture. In
addition, the software fitness evaluator along with the para-
meterized hardware PSO Core provide a scalable framework for a
range of discrete PSO applications. Hence, the architecture is
intended to facilitate the use of PSO-based techniques in
embedded systems. The implemented system performs fitness
evaluation in software and all other PSO operations in hardware.
In addition, the employed master–slave parallel system uses an
asynchronous and discrete model of PSO. The proposed system
has been implemented on an Altera Stratix Development Kit, and
its performance has been compared with that of the correspond-
ing software implementation. Test beds are MaxOne problem and
optimizing four classic arithmetic functions.

The remaining sections are organized as follows: Section 2
reviews the previous work on applications and hardware
implementations of the PSO algorithm. Section 3 gives an
overview of the basis of PSO, different ways to deal with particles,
and parallel characteristics of PSO. The proposed framework is
described in Section 4. Also, the implementation of the system
and details of the employed architecture are described in this
section. Section 5 explains the experimental results over five
benchmarks and compares the results with the software-based
implementation as well as pure-hardware implementation. Sec-
tion 6 presents an adoption of our PSO implementation for neural
network training as a case study of a real-world application.
Section 7 concludes the paper and explains our future work.
2. Previous work

Particle swarm optimization is a new population-based
stochastic optimization technique. More and more researchers
are interested in this new algorithm and it has been investigated
from various perspectives (Song and Gu, 2004; Hu et al., 2004). To
reduce the execution time of heuristic algorithms, several
methods have been offered, including parallel and/or distributed
processing of these algorithms along with their hardware
implementation (Konfrst, 2004; Chen et al., 2005; Calaor et al.,
2002; Hidalgo et al., 2003).

Different types of parallel implementations of PSO have been
introduced in literature. Early parallel PSO implementations have
employed synchronous evolution methods (Schutte et al., 2004;
Chang et al., 2005; Cui and Weile, 2005; Jin and Rahmat-Samii,
2005), while asynchronous evolution has been emphasized
recently (Koh et al., 2006; Venter and Sobieszczanski-Sobieski,
2005). Parallel implementations of PSO are mostly based on
cluster computing and message passing interface protocol (Koh
et al., 2006; Schutte et al., 2004, 2003; Venter and Sobieszczanski-
Sobieski, 2005; Gies and Rahmat-Samii, 2003; Jin and Rahmat-
Samii, 2005).

Although different hardware approaches have been proposed
for GA so far (Zhu et al., 2006), a few hardware-based
implementations of PSO have been reported. In Kokai et al.
(2006), the authors have used hardware implementation of PSO in
an FPGA for the employment with blind adaptation of the
directional characteristic of array antennas. They have introduced
multi-swarm architecture in which each single swarm optimizes
only a single parameter of the application. However, they have
not mentioned the hardware implementation cost, achieved
frequency, and also performance.

In Reynolds et al. (2005), the authors have implemented a
modified particle swarm optimizer and neural network in FPGA.
In their architecture, many of the computations are preformed in
parallel to reduce computation time as compared to software
implementation. They have employed two Xilinx XC2V6000
FPGAs. One FPGA was used for fitness function calculations, and
the other was used for the particle swarm operations. At 100 MHz,
their implementation was about 60 times faster than software
implementation. Also, they have not reported the hardware cost.

In Pena et al. (2006), a hybrid swarm optimization technique
has been offered to accommodate embedded or hardware
dedicated applications. Their approach does not require multi-
plication and consists of a population of neural networks in an
FPGA that are evaluated in an embedded processor and are
trained by the proposed algorithm. In Pena and Upegui (2007),
they have presented an architecture for a hardware-friendly
version of PSO. The architecture is composed of a number of
particle computation blocks connected to each other to shape a
ring topology. Each computation block consists of memory units,
a 6-stage pipelined particle update unit, and a personal best
update unit. Each computation block updates a particle, performs
particle computation, and is connected to a fitness evaluation
block. All the particles in the swarm are evaluated and updated in
parallel, increasing hardware cost linearly with the population
size. The architecture has been implemented on a Xilinx Virtex-4



ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187 179
LX FPGA running at 160 MHz. Updating particles in this
architecture (excluding fitness computation and other calcula-
tions) is 8600 times faster than the software implementation in
MATLAB.

In Duren et al. (2007), the authors have used the PSO algorithm
implemented on an SRC-6e reconfigurable computer to invert the
neural network to search for a set of inputs to the network. The
network is implemented in one FPGA and a 3-stage pipelined PSO
is implemented in a separate Virtex-2 FPGA running at 100 MHz.
According to the master–slave relationship, PSO acts as the
master and the network, used to evaluate fitness, acts as the slave.
By using a hardware fitness evaluator, they have achieved a
speed-up of a factor 65 over a conventional personal computer.
3. Particle swarm optimization

3.1. Particle swarm optimizer algorithm

The particle swarm optimizer is a swarm intelligence algo-
rithm that emulates a flock searching over the solution landscape
by sampling points and converging the swarm on the most
promising regions. A particle moves through the solution space
along with a trajectory defined by its velocity. The structure of a
particle is significantly more complex than that of a member of a
GA population. A particle consists of five components:
�
 x, a vector containing the current location in the solution
space. The size of x is dictated by the number of variables used
by the problem being solved.

�
 fitness, the quality of the solution represented by the vector x,

as computed by a problem-specific evaluation function.

�
 v, a vector containing the velocity for each particle. The

velocity of a particle indicates the changes of the correspond-
ing x vector (particle location) in the next iteration. Altering
the v vector values changes the movement direction of the
particle through the search space.

�
 fitnessp is the fitness value of the best solution yet encountered

by a particular particle. Each particle keeps track of its
coordinates in the problem space, which are associated with
the best solution (fitness) it has achieved so far.

�
 pbest (personal best) is a copy of x for the location of the best

solution yet encountered by a particular particle.

Each particle is also aware of gbest (global best), the particle
reporting the current best fitness in the neighborhood for any
given iteration. A neighborhood may consist of some small group
of particles. Alternately, the entire swarm may be considered as a
single neighborhood, and gbest is applied globally (global PSO).
Also, fitnessg is the fitness value of the gbest.

The PSO begins with a random population and searches for
fitness optimum just like the GA. But in the PSO algorithm,
particles will evolve by cooperation and competition among the
individuals themselves through iterations instead of using genetic
operators (Shi and Eberhart, 1998).

The heart of the PSO algorithm is the process by which v is
modified, forcing the particles to search through the most
promising areas of the solution space recurrently. At each time
step, the PSO concept consists of velocity changes for each particle
toward its pbest and gbest locations. Moving toward these
locations is weighted by a random term, with separate random
numbers being generated for acceleration of particle movements
toward pbest and gbest locations. This randomness insures that
the step size will be varying to avoid aliasing. It also insures that
the particle does not get trapped into local optima, where the
particle endlessly follows the exact same path. The modified
velocity and location of each individual particle can be calculated
using the current velocity and the distance to pbestid and to gbestd

(i, d, and k represent particle, dimension, and iteration, respec-
tively), as shown in the following equations.

vkþ1
id ¼w � vk

idþc1 � r1 � ðpbestid�xk
idÞþc2 � r2 � ðgbestd�xk

idÞ ð1Þ

xkþ1
id ¼ xk

idþvkþ1
id ð2Þ

where xk
id is the current location of the particle i at the iteration k,

which has vkþ1
id as the velocity vector. This velocity satisfies

Vminrvkþ1
id rVmax. Besides, there are five parameters that should

be defined, w is the inertia weight factor, c1 and c2 are
acceleration constants, and r1 and r2 are uniform random
numbers between 0 and 1.

As Eq. (1) shows velocity changes of a particle consist of three
parts. The first part is known as the ‘‘momentum’’ component and
represents a proportional movement to the previous velocity. This
part is the tendency of the particle to continue in the previous
direction. On each iteration, the previous values of v constitute
the particle’s momentum. This momentum is essential, as it is the
feature of PSO that allows particles to escape local extrema. The
second part, known as the ‘‘cognitive’’ component, attracts the
particles toward their own best location found so far, exploiting
their own personal experience. The third part is known as the
‘‘social’’ component and pulls the particles toward the best
location found so far by any other particle, exploiting group
experience (Ratnaweera et al., 2004). These components together
enable particles to utilize the local and global information on each
iteration. The evolution process usually begins with an initial
random distribution and evolves as defined by Eqs. (1) and (2).

In the procedures above, the parameter Vmax determines the
resolution in which regions between the present location and the
target location are searched. If Vmax is too high, particles may fly
over the good solutions. If Vmax is too small, particles may not
sufficiently explore beyond local solutions.

The constants c1 and c2 represent the weighting of the
stochastic acceleration terms that pull each particle toward pbest

and gbest locations. Low values allow particles to wander far from
target regions before being pulled. On the other side, high values
result in abrupt movements toward the target regions or pass the
target regions. Hence, the acceleration constants c1 and c2 are
often set to be 2.0.
3.2. Discrete particle swarm algorithm

The original PSO algorithm can only optimize problems in
which the elements of the solution are continuous real numbers.
Discrete particle swarm optimization can be obtained by repla-
cing Eqs. (2) and (3):

xkþ1
id ¼

1 for randð�ÞoSðvkþ1
id Þ

0 for randð�ÞZSðvkþ1
id Þ

8<
: ð3Þ

where SðvÞ is a sigmoid limiting transformation function,
SðvÞ ¼ 1=ð1þevÞ, and randð�Þ is a random number selected from a
uniform distribution in [0.0, 1.0].

Vmax in the discrete particle swarm is employed to limit further
exploration after convergence of the swarm. In fact, it acts exactly
opposite the mutation rate. Although higher Vmax in the
continuous-valued PSO raises the mutation rate and the explora-
tion range of a particle, the opposite happens in a discrete PSO
algorithm. Smaller Vmax causes more exploration (Kennedy and
Eberhart, 1997).



ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187180
3.3. Asynchronous particle swarm optimization

The main difference between synchronous and asynchronous
PSO concepts is the method used to update particle locations and
velocities. Synchronous PSO updates particle locations and
velocities at the end of each iteration. Therefore, after calculating
the fitness values of all particles, gbest is updated and new
location and velocity of particles are generated. Thus, synchro-
nous PSO entails a synchronization point before advancing the
next iteration. By virtue of synchronization point, some blocks
stand idly by in hardware implementations. In contrast, asyn-
chronous PSO updates particle locations and velocities ceaselessly
with respect to the most recently available information. So, the
processing of particles can progress continuously in a pipelined
manner.

3.4. Parallel particle swarm optimization

PSO like the other population-based algorithms is paralleliz-
able. For each iteration, the process of each particle is indepen-
dent of other particles, causing particles to be effortlessly
analyzed in parallel (Schutte et al., 2004). On the other hand,
the PSO algorithms suffer from high computational cost and high
elapsed time. Since complex engineering optimization problems
demand high computational cost, the development of parallel
optimization algorithms has been motivated. Parallel PSO algo-
rithm is also valuable due to its global search capabilities.

Synchronous parallel implementations of PSO do not make
efficient use of computational power of hardware resources since
they require a synchronization point. In software-based designs,
parallel synchronous implementation is ideal when processors
take a constant amount of time to evaluate any set of design
variables throughout the optimization (Koh et al., 2006). How-
ever, in many optimization problems such as those of scientific
and industrial problems, the time required for fitness evaluation
varies for different particles. In such cases, an asynchronous
implementation is a better choice to reduce execution times and
maintain high parallel efficiency. The convergence rate of
asynchronous parallel PSO is comparable to that of the synchro-
nous one (Koh et al., 2005).
4. Realization of parallel PSO framework

4.1. Hardware implementation

A parallel hardware design requires a partitioning of the
algorithm into independent blocks in order to be utilized
efficiently. Parallel synchronous implementation of PSO makes
blocks partly idle and requires a huge amount of local storage for
temporary data. On the other hand, parallel asynchronous method
is well suited when the computational powers of diverse blocks
are different. Since hardware implementation of asynchronous
PSO eliminates the demands of synchronization and multiple port
memories, the algorithm utilizes hardware logics remarkably and
also reduces area cost. In this case, the parallel nature of the
algorithm is appropriately utilized. This method provides an
extremely parallel architecture to gain better speed-up.

Hardware-based parallelism has been exploited at two levels:
at the fitness evaluation level and at the particle evolution level.
At the fitness evaluation level, an on-chip multiprocessing
architecture has been used to compute the fitness values in
parallel. Since fitness function evaluation is the most time
consuming part of the algorithm, a number of embedded
processors work simultaneously to prepare fitness values. More-
over, since fitness evaluation is completely problem-dependent, it
is implemented in software through programming the memories
of the embedded processors to readily adapt the system to
different kinds of problems without modifying the hardware.

The master–slave paradigm (Cantú-Paz, 1998) is a well-known
model for many parallel evolutionary algorithms. Our proposed
architecture follows an improved master–slave model as shown
in Fig. 1. Our model is able to reach the most parallel efficacy by
virtue of asynchronously updating particles and employing two
temporary data storages. In this model, there are several fitness
evaluator units (Nios II Processor) acting as the slave units. Each
unit independently evaluates the fitness values of particles using
software codes that are loaded into the program memory of the
processor. After completion of fitness computation of a particle,
the processor is ready to receive and evaluate the fitness of
another particle. Our framework is a composition of such
programmable embedded processors which are not exclusively
committed to a specific particle. The instruction and data
memories of embedded processors are assumed to be on-chip
for simplicity.

After fitness evaluation, they pass the corresponding fitness
value to the Fitness Value Memory which is shared among the
pipelined particle swarm optimization (PPSO) Core (described
below) and the embedded processors. In this model, the PPSO

Core acts as the master unit. The Fitness Value Memory has a read
port and a write port. Fitness values are read by the PPSO Core and
are written by an Arbiter Block. The Arbiter Block prevents Nios II
processors from occurring write conflicts while accessing the
Fitness Value Memory. The Arbiter Block is in charge of writing
the recently computed fitness value of each particle, which is the
output of a processor, to the Fitness Value Memory. To keep the
processors more active, whenever the Fitness Value Memory is
busy, the Arbiter Block stores the newly computed fitness values in
a temporary fitness value storage. The Fitness Value Status Register

is responsible for holding information about the fitness evaluation
operations. This register is also tested to determine the status of
the fitness value of each particle.

The master unit performs all the particle-related processes
such as updating velocity/location. The FIFO Block, as another
temporary storage, holds the queue of particles ready to be sent to
slave processors. The PPSO Core writes an updated particle
location into the end of the queue and the Multiprocessor
Controller reads the particle at the head of the queue. Once a
slave processor finishes its corresponding tasks, the head particle
in the queue is sent to it by the Controller. The whole design uses
a centralized controller to direct the flow of data communication.

To find a solution for an optimization problem using PSO, each
particle consists of a number of variables that determine the
location of the particle in the search space. One of the drawbacks
of PSO in solving complex problems is the particle length.
Complex problems usually need a huge number of variables (long
bit strings as candidate solutions). Long particles of the complex
problems increase the area cost and reduce the processing speed.
To handle this issue, at another parallelism level introduced here,
the particles are split into a small number of variables so-called
subparticle as shown in Fig. 2. Each subparticle is processed in
parallel regardless of other subparticles. In fact, the subparticle
method brings a trade-off between speed and hardware area.
Subparticle length defines the particle update time and hardware
cost. Long subparticles require more area due to the higher level
of parallelism, but reduce particle processing time. The user
determines the subparticle length as a parameter at compile time
with respect to the required speed and the available area. This
method of parallelism reduces the hardware area cost and makes
the architecture independent of particles length. Particles with
different lengths can be processed without increasing the



ARTICLE IN PRESS

Fitness
Value 

Memory

Pipeline
Particle
Swarm 

Optimization
(PPSO) Core

FIFO
Block

&
Multi-

Processor
Controller

Nios II
Processor Core

Nios II
Processor Core

Nios II
Processor Core

Nios II
Processor Core

Data & Inst. 
Memory

Data

Inst.

Arbiter 
Bloc k

Data In

Address

RG

RG

RG

RG

RR

RR

RR

RR

Data

RR: Read Request From Processor
RG: Read Grant From Controller
WE: Write Enable

Particle Location

Particle Number

FIFO Full

Write

Particle Fitness
Transfer Complete

Write Req

Data & Inst. 
Memory

Data

Inst.

Particle Fitness
Transfer Complete

Write Req

Data & Inst. 
Memory

Data

Inst.

Particle Fitness
Transfer Complete

Write Req

Data & Inst. 
Memory

Data

Inst.

Particle Fitness
Transfer Complete

Write Req

R
ea

d

A
dd

re
ss

Data Out

Evaluating Fitness Value

Fitness 
Value 

Temporary 
Storage

Particle 
Location 

Temporary 
Storage

Fitness 
Value 
Status

Register

Fi
tn

es
s 

V
al

ue
 

S
ta

tu
s

WE

Fig. 1. Realization of the parallel PSO framework using four Nios II processors. The PPSO Core as the master unit updates particles, while Nios II processors as the slave units

evaluate fitness values.

32-bit Particle

1 2 4 63 5 7 8

Fig. 2. A 32-bit particle is divided into eight 4-bit subparticles. The updating

operation of each subparticle is performed in parallel, i.e., four bits are updated

concurrently.

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187 181
hardware cost. Long particles take more cycles, however, this
method does not lead to modification in the hardware. Thus, the
proposed architecture is flexible enough to compute any particle
swarm optimization problem without requiring to redesign the
hardware system.

A hardware unit called PPSO Core has been designed and
implemented to treat the subparticles. This core accomplishes all
the particle processes. The PPSO Core architecture is designed to
attain the throughput of one subparticle per clock. To this end, it
has a 5-stage pipelined structure. It consists of different
memories, pipelined computational stages, and other diverse
blocks. The internal organization of the proposed core and
interconnections of different components are depicted in Fig. 3.
Below is a description of the components of the PPSO Core.

Random Number Generation (RNG) Block: This component is
very important in PSO hardware implementation. For example, for
updating a 32-bit particle in 1000 iterations, 96,000 random numbers
are needed (excluding random numbers required for fitness
evaluation). To generate pseudorandom numbers, generally, linear
feedback shift registers (LFSR) or cellular automata have been
employed (Martin, 2002). The random numbers produced by the
LFSRs supply enough performance in order to be used in evolutionary
computations (Martin, 2002). Since an LFSR output histogram is
similar to that of a uniform random variable (Reynolds et al., 2005),
these units have been used to generate random numbers.

Memory Blocks: Three separate memories are used in the PPSO

Core to keep the necessary vectors and values. These are
accessible only by means of the PPSO Core. The Particle Location

Memory (PLM) keeps the location vectors ðxÞ for the particles in a
swarm. Continually, location vectors of particles are updated and
stored in this memory. Since we are aiming to implement the
discrete model of PSO, each dimension is represented by one bit.
The Particle Velocity Vector Memory (PVM) holds velocities of the
particles. The dimensional velocity vectors of a particle are
represented with 9 bits (4 bits for integer part, and 5 bits for
fraction part), providing enough accuracy for our applications.
Since the PPSO Core is fully parameterized, more accurate velocity
vectors can also be used for the particles. The Pbest Memory keeps
the best visited location of each particle (pbest vector) and its
corresponding fitness value. Each fitness value is 32 bits. There-
fore, for a swarm of eight 32-bit particles, PLM, PVM, and Pbest

Memory hold 256, 2.3 K, and 512 bits, respectively.
Gbest Block: This block retains the best solution yet achieved

by all particles (gbest vector) and corresponding fitness value.
Fetch Stage: This is the first stage of the pipeline. In this stage,

the required values and vectors are fetched from the memories.
Update Gbest and Pbest Stage: This stage compares the

calculated fitness of current location with the stored old ones to
update pbest and gbest in each calculation step.

Update Particle Velocity Vector (1) and (2) Stages: These
stages implement Eq. (1) in hardware. Updating velocity vector is
broken into two stages to gain higher frequency. Random
numbers generation and multiplication take considerable clock
cycles in every processor. In fact, the run-time of PSO in a
workstation depends dramatically on the power of a processor in
performing these calculations.

Update Particle Location: This stage calculates a new particle
location according to Eq. (3). The new particle location is
indicated by a comparison between a randomly generated
number and the sigmoid value of the velocity vector.

Sigmoid Function Approximation Block: This block imple-
ments an efficient approximation of the sigmoid function. This
block is purely combinational and does not claim memory and
multiplier, however, it yields the required accuracy (Tommiska,
2003). The input and output bit-widths of the sigmoid block are
selected based on the required precision of the output.



ARTICLE IN PRESS

Fetch
Update
Gbest & 

Pbest

Update
Particle
Velocity
Vector

(1)

Update
Particle
Velocity
Vector

(2)

Update 
Particle

Location

Particle 
Location

Pbest
 Fit.

Particle 
Fit.

Address

Particle 
Location

Vel. Vec.

Pbest 
Location

Address

Social
Part

Momentum 
Part

Cognitive 
Part

Address

Updated 
Vel. Vec.

Address

Updated 
Location

Address

Random Number 
Generation Block

Sigmoid
Function 

Approximation
Block

Particle 
Velocity
Vector

Memory

Pbest
Location

Particle 
Location
Memory

Gbest 
Block

G
best

 V
ec.

G
best
 Fit.

U
pdated
 Fit.

Pbest
Memory

Controller
Block

Gbest
Location

Rand1

Rand2 Rand3

Vel.: Velocity 
Vec.: Vector
Fit.: Fitness

Data OutData Out

w C
1

C
2

Fig. 3. The 5-stage pipelined particle swarm optimization (PPSO) Core.

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187182
Controller Block: This block is composed of state machines to
track the operations of the algorithm. In the initialization step,
this block writes a group of random values into the PLM and PVM

by means of the RNG Block. It also initializes the finite state
machines. This block generates the required control signals for all
other blocks. To make Fig. 3 simpler, the connection signals of the
Controller Block to other blocks have been omitted from the figure.

4.2. Processing time

The proposed architecture is intended to realize different
particle swarm applications. Some of the parameters of the
system such as subparticle length must be determined statically.
Our object in this subsection is to aid designers to make
engineering decisions about the structure of the required parallel
PSO system. The following formulated guideline describes the
relationship between the computation speed and different
parameters of the problem and hardware architecture. Then, to
represent the relationship, an equation is drawn that properly
approximates the required time to compute one iteration. This
representation helps us with more convenient studying about the
effects of different parameters involved in determining processing
time. Consider the following definitions:
pno
 number of particles in the swarm

plen
 particle length, i.e., number of bits that

specifies the location of a particle in the search
space
splen
 subparticle length

mPno
 number of employed embedded processors for

calculating fitness values
htime
 time that a handshaking operation takes
between a processor and other blocks to
transfer 32-bit data
hno
 number of handshaking operations for each
particle between a processor and the FIFO Block
fittime
 required time for evaluating fitness of one
particle (fitness computation time)
pUpdatetime
 required time to update one particle using the
PPSO Core
busActivitytime
 time that the common data bus between the
processors and the FIFO Block is occupied
(communication time between the processors
and the FIFO Block)
T
 processing time for one iteration
Since most of the processors have 32-bit I/O ports, in each data
transferring step, a maximum of 32 bits can be sent into or taken
from a processor. The length of the fitness value is set to 32 bits.
Thus, transferring the fitness value for each particle always needs
one communication operation and is performed through the
Arbiter Block. Regarding the optimization problem, the length of a
particle may be more than 32 bits. In this case, dplen=32e defines
the necessary number of handshaking operations which is
required to transfer a particle location to a processor, where d�e
denotes the ceiling operation. The following equation presents the
number of handshaking operations required for transferring a
particle location between a processor and the FIFO Block. This
operation is performed through a common data bus:

hno ¼ dplen=32e ð4Þ

Also, note that these operations must be replicated for each
particle in the swarm. Therefore, the number of handshaking
operations for a swarm in one iteration is pno:hno.

The communication time between a processor and the FIFO Block

is given as hno:htime. Communications between the FIFO Block and
processors rely on a common data bus. As the number of processors
increases, more data are communicated between the processors and
the FIFO Block and, as a result, bus transactions grow. Thus, the
required time for the communications which are performed through
the bus can be stated by the following equation:

busActivitytime ¼ hno:htime:mPno ð5Þ

Increasing the number of processors increases the ratio of
busActivitytime to fittime. Nevertheless, hno:htime is much smaller than
fittime for different benchmarks, and hence, a large number of



ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187 183
processors can be employed without any risk of bus congestion. In
the worst case of the benchmarks, the ratio of hno:htime to fittime is
0.087. So, 11 processors can be efficiently used in parallel without
degrading the performance of each single processor. Essentially,
real-world applications require longer time to evaluate fitness as
compared to the benchmarks and communication time can be
considered negligible.

The proposed PPSO Core has a 5-stage pipelined architecture
with throughput of one subparticle per clock cycle. The required
time for updating one particle is a direct function of the particle
and subparticle lengths:

pUpdatetime ¼ dplen=splene ð6Þ

fittime is directly determined according to the complexity of the
problem and capability of the employed processors. All of the
processors perform fitness evaluation in parallel. Therefore,
swarm size is divided into pno=mPno subswarms. To reach the
maximum parallel efficacy, the following condition must be
satisfied (the required time for transferring a fitness value is
assumed the same as htimeÞ :

fittimeþðdplen=32eþ1Þhtime

mPno
¼ pUpdatetime ð7Þ

Eq. (8) shows the required time for computing one iteration:

T ¼maxððpno:pUpdatetimeÞ; ððpno=mPnoÞ:ðððdplen=32eþ1ÞhtimeÞþ fittimeÞÞÞ

ð8Þ

In Eq. (8), the processor initialization time is assumed to be
negligible. Since fitness evaluation is performed using software
programmed codes, left expression of Eq. (7) takes more time than
the right expression. Thus, fittime is the dominant part and Eq. (8)
can be simplified to become irrespective of pUpdatetime. Investi-
gating the fitness computation time for different benchmarks
confirm this simplification. Eq. (8) is not restricted to the SOPC-
based architecture and is also applicable to the pure-hardware
implementation in which the processors are replaced with special
purpose hardware blocks.

Increasing the complexity of fitness evaluation intensifies the
importance of the number of processors (mPno) in performance.
Hence, employing proper number of processors can effectively
decrease the total processing time. Also, larger particles increase
hno and pUpdatetime which are not influenced by mPno.
5. Experimental results

To measure the SOPC-based system performance, the system
has been simulated and implemented on an Altera Stratix 1S10ES
Development Kit (chip EP1S10F780C6ES) (Altera Corp, 2006a). All
hardware blocks are developed using synthesizable Verilog
hardware description language. The area usage of the PPSO Core

depends on the subparticle length. For instance, for 2-bit
subparticles, it uses less than 1000 logic elements. The required
amount of memory for saving PSO related vectors is less than
3400 memory bits for a swarm of eight 32-bit particles.
Table 1
Test suites.

Function Equation

MaxOne f0ðxÞ ¼
Pn

i ¼ 1 xi ; n¼ 32

Sphere f1ðxÞ ¼
Pn

i ¼ 1 x2
i ; n¼ 3

Rosenbrock f2ðxÞ ¼
Pn�1

i ¼ 1ð100ðx2
i �xiþ1Þ

2
þð1�xiÞ

2
Þ; n¼ 2

Step f3ðxÞ ¼ 6nþ
Pn

i ¼ 1bxic; n¼ 5

Rastrigin f4ðxÞ ¼
Pn

i ¼ 1ð10þx2
i �10cosð2pxiÞÞ; n¼ 3
For fitness evaluation, Nios II/s general purpose RISC processor
(Altera Corp, 2006b) is employed with hardware multiplication
and divide units. Altera has introduced this soft-core embedded
processor for its SOPC systems. The Nios II instruction set is
designed to support programs compiled using C and Cþþ . The
Nios II/s processors are employed to perform fitness evaluation in
the proposed system. Each Nios II/s processor requires almost
1500 logic elements and the required memory bits for each data
and instruction memory depend on the programmed fitness
function.

The effectiveness of our SOPC implementation of PSO has been
demonstrated on five test functions. The utilized test functions
are the MaxOne problem and four arithmetic functions of the very
standard DeJong Test Suite (De Jong, 1975) with binary encoding.
In the MaxOne problem, the sum of all the bits of a particle must
be maximized. In the other functions, the fitness value must be
minimized. The algebraic forms of these functions are given in
Table 1. First and second columns represent the function name
and equation. The third column shows the value range of particles
for each function. The fourth column determines the number of
bits for each particle (function dimension), and the last column
represents the maximum number of iterations required for each
function which in fact indicates the termination condition.
Although the length of particles for each function is different,
the functionality of the proposed system is independent of the
particle length and the system is capable of handling particles
with various bit-string lengths.

It is worth noting that the purpose of the multiprocessing
framework is performing fitness evaluation in parallel. Conse-
quently, multiprocessing reduces the computation time of the
algorithm. However, as the number of processors on a chip
increases, the maximum acquired frequency decreases due to
higher congestion and longest path delays on an FPGA. In this
design, the maximum operating frequency for one, two, three and
four processors on a single chip is 61.6, 59.4, 58.9, and 58.6 MHz,
respectively. This degradation of maximum frequency is tolerable
and does not conceal the effectiveness of the parallel design.
Using a more powerful FPGA is a way to achieve higher frequency
and better performance. The hardware cost of the proposed SOPC-
based PSO system using four Nios II/s processors as the fitness
evaluators is given in Table 2. The maximum operating frequency
of each circuit is also shown in Table 2. The last column of the
table reports the number of used DSP blocks. The Altera Stratix
FPGAs contain a flexible embedded block, called a DSP block.
These blocks can perform accumulate functions as well as
multiply operations. In this table, 2-bit subparticles are
employed in the PPSO Core and the swarm size is eight.

The convergence rate of the software implemented asynchro-
nous discrete PSO has been compared with the SOPC-based
implemented asynchronous PSO to make an investigation of the
performance of our SOPC-based implementation. In all the
experiments, the PSO algorithms use parameter values w¼ 1,
c1 ¼ c2 ¼ 2, and the swarm size is eight. During the run of the
algorithm, a maximum velocity Vmax ¼ 8 was applied for every
component of the velocity vector. The results are depicted in
Search range Dimension Max iteration

f0;1g 32 50

½�5:12;5:12Þ 30 100

½�2:048;2:048Þ 24 100

½�5:12;5:12Þ 50 100

½�5:12;5:12Þ 30 100



ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187184
Fig. 4. In this figure, graphs represent the average of best
evaluations in 50 repeated runs over the number of iterations.
Fig. 4 shows that the performance of the SOPC-based
implementation is comparable to the software one.

The elapsed time of our SOPC-based pipelined PSO was
benchmarked against a pure-software-based solution of PSO
written in MATLAB (MathWorks Inc, 2007) and implemented on
a single 3-GHz Pentium IV processor, 1-GB RAM, and Windows XP
Pro OS. Table 3 presents a comparison in speed between software
and SOPC-based versions for different numbers of processors. The
results are reported in terms of 1000 clock cycles and milliseconds
considering a period of 20 ns (50 MHz) as well as regarding 2-bit
subparticles. Swarm size (number of particles) for all the
problems is assumed to be eight. Termination condition is the
maximum number of iterations as described in Table 1.
Table 2
Hardware usage of the SOPC-based asynchronous discrete PSO system using Altera Str

Block Required memory bits

MaxOne Sphere Rosenbrock

Pipelined PSO Core 3.3k 3.2k 2.6k

Four Nios II/s Cores & Memoriesb 242k 402k 400k

Arbiter and FIFO 1k 1k 1k

Other – – –

a Logic elements.
b Nios II processor internal memories in addition to on-chip data and instruction m

MaxOne

0

2

4

6

8

10

1
0.0

0.

0

Rosenbrock

0

1.5

3

4.5

6

1

Rastr

0

5

10

15

20

1
Software-Based
SOPC-Based Im

6 11 16 21 26 31 36 41 46

11 21 31 41 51 61 71 81 91

11 21 31 41 51

Fig. 4. Average performance of the software-based floating point implementation of asy

functions. For each graph, the x-axis shows the iteration number and the y-axis repres
The major bottleneck of the system is the fitness evaluation
with the Nios II processors. It is possible to design specific
hardware for fitness evaluation (instead of software implementa-
tion) in case of simple problems to speed up the system. Table 4
shows the results of the pure-hardware implementation using
one fitness evaluator block. PSO Parameters are the same as the
previous experiment. In this case, in addition to updating
particles, a custom fitness evaluator block is implemented in
hardware. As expected, the elapsed time is considerably less than
SOPC-based architecture. Nevertheless, an expert hardware
engineer must design a specific fitness evaluator block for every
different fitness function. This is a time consuming and error
prone task that sometimes is practically impossible for complex
functions. Thus, in this way, modularity and flexibility are lost and
the design becomes more cumbersome.
atix Kit.

LEsa Max freq. (MHz) No. of DSPs

Step Rastrigin

4.9k 3.2k 805 76.3 4

330k 654k 6894 61.7 32

1k 1k 255 131.3 –

– – 298 – –

emories which hold the software codes of fitness function.

Sphere

001

001

.01

0.1

1

10

1

igin

 Implementation
plementation

Step

0

2

4

6

8

10

1

11 21 31 41 51 61 71 81 91

11 21 31 41 51 61 71 81 91

61 71 81 91

nchronous discrete PSO and the SOPC-based implementation of it for different test

ents the average fitness values computed over 50 trials.



ARTICLE IN PRESS

Table 3
Elapsed time of the SOPC-based and software implementations of asynchronous discrete PSO.

Function SOPC-based implementation elapsed timea Pure-software impl.

One processor Two processors Three processors Four processors Elapsed time (ms)

MaxOne 124 (2.5 ms) 62 (1.2 ms) 42 (0.8 ms) 32 (0.6 ms) 28

Sphere 8881 (177.6 ms) 4595 (91.9 ms) 2983 (59.7 ms) 2229 (44.6 ms) 1868

Rosenbrock 7617 (152.3 ms) 3768 (75.4 ms) 2512 (50.2 ms) 1903 (38 ms) 1372

Step 6206 (124.1 ms) 3101 (62 ms) 2032 (40.6 ms) 1544 (30.9 ms) 3059

Rastrigin 40,774 (815.5 ms) 21,042 (420 ms) 14,820 (296 ms) 11,108 (222 ms) 1875

a The elapsed time is reported in 1000 clock cycles. Termination condition for each function is the maximum iteration number reported in Table 1.

Table 4
Pure-hardware implementation using one fitness evaluator block.

Function Using DSP blocks Without using DSP blocks Fitness timea Elapsed timeb

No. of DSPs LEs Frequency (MHz) LEs Frequency (MHz)

MaxOne 4 993 72.0 1215 71.2 5 6573

Sphere 10 1063 71.0 1821 48.5 4 12,165

Rosenbrock 24 1040 53.6 2380 37.2 5 9741

Step 24 1021 70.1 1730 47.5 5 20,245

Rastrigin 18 1374 60.3 2909 47.7 22 21,587

a Required clock cycles for calculating fitness value of a particle using the hardware fitness evaluator block.
b The elapsed time is reported in terms of clock cycles. Termination condition for each function is the maximum iteration number reported in Table 1.

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187 185
By implementing fitness functions in software using em-
bedded processors, the complexity of the fitness evaluation does
not alter the structure of the architecture. Regarding Table 3, a
roughly leaner speed-up has been measured with increasing the
number of processors. Also, a speed-up of up to 98 times has been
obtained in moving to SOPC-based architecture, while the SOPC-
based clock speed is almost 60 times slower than the Pentium
processor used here for the pure-software implementation. This
issue shows the capability of the system in embedded environ-
ments as a real-time optimizer.
6. A real-world application as a case study: neural network
training

This paper proposes a framework for hardware implementa-
tion of PSO algorithm bringing flexibility and speed. This work is
intended for real-world applications. In this section, a practical
application of the proposed framework has been introduced. The
implementation results of the application validate the aforemen-
tioned method.

The proposed architecture for PSO algorithm can be exploited
to train multi-layer perceptron (MLP) neural networks. Artificial
neural networks (ANNs) have been successfully used in a wide
range of scientific and engineering applications (Haykin, 1999;
Widrow et al., 1994; Fiesler and Beale, 1997). By learning or
training from examples, a neural network (NN) is capable of
exhibiting intelligent behavior and modeling complex non-linear
functions which makes it proper to variable conditions. Training is
the process of gradually adjusting the weights of connections. In
this paper, the PSO algorithm has been employed for training
feedforward neural networks. In Zhao et al. (2005), Liu et al.
(2004), Carvalho and Ludermir (2006), Gudise and Venayaga-
moorthy (2003), and Mendes et al. (2002), the authors have
proven the speed and accuracy of using PSO to determine the
neural network weights.

In NN training, the main goal is to obtain a set of weights that
minimizes mean squared error. In order to address the problem of
neural network training to PSO, we represent each set of weights
and biases of a network by a single particle. Thus, each particle is a
string that encodes a candidate solution for the weights and
biases of all neurons in the network. The length of a particle
depends on the network intended to train. A pool of particles is
considered as a swarm for PSO. By repetitively updating particles
of the swarm, the most suited network weights are gradually
determined.

In order to train a neural network using the proposed
framework, the software codes that are used to train the network
are loaded into the program memory of the Nios processors
(Fig. 1). Weights and biases are evolved by the PPSO Core. In
addition, a set of training inputs are applied to the network by the
processors. Each processor first computes output value(s) of the
network using weight, bias, and input values and then computes a
fitness value. Fitness value is considered as the cumulative error
of network output(s) for the entire training set. In other words,
differences between the target (desired) outputs and actual
outputs of the neural network are calculated. The differences for
the entire training set are summed up to achieve a fitness value. In
this manner, particles are updated by the PPSO Core and fitness
values are computed by the processors. Consequently, different
NNs can be automatically trained by using the proposed frame-
work. A designer should only write the software codes for
processors without the need to interact with hardware which
reduces design time and enhances flexibility.

A pure-hardware version of this system has been also
presented by the authors in Farmahini-Farahani et al. (2008). In
the pure-hardware architecture, the embedded processors are
replaced with four specific neural network processing elements to
reduce computation time, while flexibility is removed and design
time increases dramatically. Table 5 presents speed comparison
between the SOPC-based implementation and the pure-hardware
implementation for three different networks. The results are
reported in terms of seconds considering a period of 20 ns
(50 MHz) and shows the processing time for one iteration.
Swarm size for all the networks is assumed to be eight. As
expected, the pure-hardware implementation has far less



ARTICLE IN PRESS

Table 5
Elapsed time of the SOPC-based and pure-hardware implementations of neural network training using the proposed framework.

Network SOPC-based implementation elapsed time Pure-hardware

implementation (ms)

No. of training

inputs

Structure One processor

(ms)

Two processors

(ms)

Three processors

(ms)

Four processors

(ms)

2-2-1 53.7 28.9 19.3 14.1 14.08 4

3-6-2 325.8 162.7 110.1 83.6 46.88 8

4-5-5-3 1153.1 567.2 390.1 288.5 152 16

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187186
execution time than the SOPC-based implementation. However,
design and verification time is always the major problem of a
pure-hardware design. Ultimately, The flow presented here
explains a real-world application of the proposed framework as
a parallel architecture for implementing PSO algorithm using
embedded processors.
7. Conclusions and future work

In this paper, a scalable embedded implementation has been
proposed for an asynchronous discrete PSO realization using the
system-on-a-programmable-chip (SOPC) approach. In doing so,
on-chip parallelism and also a pipelined PSO Core have been
employed as a real-time function optimizer. The proposed
framework contains a set of parallel embedded processors that
are connected by an on-chip bus architecture. Hence, increasing
the number of processors is feasible to bear computationally
intensive fitness functions. Also, different discrete problems with
different particle lengths can be applied to the framework.
Therefore, it is scalable in terms of both the number of integrated
processors and particle length. The architecture targets an
assortment of pipelined and parallel structures that enables it to
realize different kinds of particle swarm optimization problems in
a single framework.

All of the structural parameters formulated here aid the
designer in choosing the proper number of processors and best
architecture for the PSO Core. The reusability of the core was
strengthened with supporting various discrete particles and the
formulated design guidelines. One scheme of realizing the parallel
PSO framework was presented along with a block diagram of the
complete pipeline. The proposed implementation has shown a
considerable speed-up over a software-based implementation,
especially for long particles. The experimental results prove the
benefits of our mixed hardware–software solution in comparison
to having an exclusively software or hardware implemented
system.

As a result of hardware–software co-implementation, speed
improvement is the advantage of this system in comparison to a
pure-software implementation. The benefits of this system as
compared to a pure-hardware implementation are remarkable.
Various applications with different fitness functions are easily
managed by programming the soft fitness evaluation core
(modularity), and, furthermore, it is easily reconfigurable in
comparison to an ASIC design. Utilizing the soft cores for fitness
evaluation along with scalability of the system makes it appro-
priate for various applications, and, accordingly, more convenient
in comparison with the pure-hardware implementation.

Our solution provides a trade-off between the speed of a pure-
hardware solution and the flexibility of a pure-software imple-
mentation. Therefore, it has balanced speed against the ease of
programmability. Also, the proposed architecture makes the
design independent of particle length, allowing solving diverse
PSO problems readily without altering the design.
Finally, the design flow of utilizing the PPSO Core was
presented in the form of embedded implementation of a PSO-
based neural network training algorithm. The whole design is
realized on an SOPC bed in favor of Nios II microprocessors. The
architecture of the design is suited for real-world applications
which delivers fast, flexible and low cost development of
products.

Our future work is expanding this architecture to cover
continuous-valued PSO, in which the system is more dependent
on arithmetic functions and less on RNG units. Also, adding some
other modules such as inertia weight and implementation of
other topologies of PSO are under consideration. Another inter-
esting work is devising an approach to overcome the drawbacks
to common data bus regarding the features of the PSO algorithm.

References

Altera Corp., 2006a. Nios II Development Kit, Stratix Edition. /http://www.altera.
com/products/devkits/altera/kit-nios_1S10.htmlS.

Altera Corp., 2006b. Nios II Processor Reference Handbook.
Bäck, T., 1996. Evolutionary Algorithms in Theory and Practice. Oxford University

Press, New York, NY.
Bäck, T., Harnmel, U., Schwefel, H.P., 1997. Evolutionary computation: comments

on the history and current state. IEEE Transactions on Evolutionary Computa-
tion 1 (1), 3–17.

Calaor, A.E., Hermosilla, A.Y., Corpus Jr., B.O., 2002. Parallel hybrid adventures with
simulated annealing and genetic algorithms. In: Proceedings of the Interna-
tional Symposium on Parallel Architectures Algorithms and Networks, Makati
City, Metro Manila, Philippines, May, pp. 33–38.

Cantú-Paz, E., 1998. A survey of parallel genetic algorithms. Calculateurs Paralléles.
Réseaux et Systémes Répartis 10 (2), 141–171.

Carlisle, A., Dozier, G., 2001. An off-the-shelf pso. In: Proceedings of the Workshop
Particle Swarm Optimization, Indianapolis, IN, April, pp. 1–6.

Carvalho, M., Ludermir, T.B., 2006. An analysis of PSO hybrid algorithms for feed-
forward neural networks training. In: Proceedings of the Brazilian Symposium
on Neural Networks, Ribeirao Preto, Brazil, October, pp. 2–7.

Chang, J.-F., Chu, S.-C., Roddick, J.F., Pan, J.-S., 2005. A parallel particle swarm
optimization algorithm with communication strategies. Journal of Information
Science and Engineering 21 (4), 809–818.

Chen, D., Lee, C.-Y., Park, C.H., 2005. Hybrid genetic algorithm and simulated
annealing (HGASA) in global function optimization. In: Proceedings of the IEEE
International Conference on Tools with Artificial Intelligence, Hong Kong,
China, November, pp. 126–133.

Cui, S., Weile, D.S., 2005. Application of a parallel particle swarm optimization
scheme to the design of electromagnetic absorbers. IEEE Transactions on
Antennas and Propagation 53 (11), 3616–3624.

Dasgupta, D., Michalewicz, Z. (Eds.), 1997. Evolutionary Algorithms in Engineering
Applications. Springer, Berlin.

De Jong, K.A., 1975. An analysis of the behavior of a class of genetic adaptive
systems. Ph.D. Thesis, University of Michigan, Ann Arbor.

Deb, K., 2001. Multi-objective Optimization using Evolutionary Algorithms. Wiley,
New York, NY.

Duren, R.W., Marks, R.J., Reynolds, P.D., Trumbo, M.L., 2007. Real-time neural
network inversion on the SRC-6e reconfigurable computer. IEEE Transactions
on Neural Networks 18 (3), 889–901.

Farmahini-Farahani, A., Fakhraie, S.M., Safari, S., 2008. Scalable architecture for on-
chip neural network training using swarm intelligence. In: Proceedings of the
Design Automation and Test in Europe Conference, Munich, Germany, March,
pp. 1340–1345.

Fiesler, E., Beale, R., 1997. Handbook of Neural Computation. IOP Publishing Ltd,
Oxford University Press.

Fogel, D.B., 1991. System Identification Through Simulated Evolution: A Machine
Learning Approach to Modeling. Ginn Press, Needham Heights, MA.

Fogel, D.B., 1994. An introduction to simulated evolutionary optimization. Neural
Networks 5, 3–14.

http://www.altera.com/products/devkits/altera/kit-nios_1S10.html
http://www.altera.com/products/devkits/altera/kit-nios_1S10.html


ARTICLE IN PRESS

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187 187
Freitas, A.A., 2002. Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer, Berlin.

Gies, D., Rahmat-Samii, Y., 2003. Particle swarm optimization for reconfigurable
phase-differentiated array design. Microwave and Optical Technology Letters
38 (3), 168–175.

Gudise, V.G., Venayagamoorthy, G.K., 2003. Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks.
In: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN,
USA, April, pp. 110–117.

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, second ed.
Prentice-Hall, NJ, USA.

Hidalgo, J.I., Prieto, M., Lanchares, J., Baraglia, R., Tirado, F., Garnica, O., 2003.
Hybrid parallelization of a compact genetic algorithm. In: Proceedings of the
Euromicro Conference on Parallel, Distributed and Network-Based Processing,
Genova, Italy, February, pp. 449–455.

Holland, J.M., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Hu, X., Shi, Y., Eberhart, R., 2004. Recent advances in particle swarm. In:
Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1,
Portland, OR, USA, June 19–23, pp. 90–97.

Jin, N., Rahmat-Samii, Y., 2005. Parallel particle swarm optimization and finite-
difference time-domain (PSO/FDTD) algorithm for multiband and wide-band
patch antenna designs. IEEE Transactions on Antennas and Propagation 53
(11), 3459–3468.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 1, pp. 1942–1948.

Kennedy, J., Eberhart, R., 1997. A discrete binary version of the particle swarm
algorithm. In: Proceedings of the IEEE International Conference on Systems,
Cybernetics and Informatics, vol. 5, Orlando, FA, USA, October 12–15,
pp. 4104–4108.

Koh, B.-I., Fregly, B.J., George, A.D., Haftka, R.T., 2005. Parallel asynchronous
particle swarm for global biomechanical optimization. In: Proceedings of the
International Symposium on Computer Simulation in Biomechanics, Cleve-
land, OH, USA, July 28–30, pp. 86–87.

Koh, B.I., George, A.D., Haftka, R.T., Fregly, B.J., 2006. Parallel asynchronous particle
swarm optimization. International Journal for Numerical Methods in Engi-
neering 67 (4), 578–595.

Kokai, G., Christ, T., Frhauf, H.H., 2006. Using hardware-based particle swarm
method for dynamic optimization of adaptive array antennas. In: Proceedings
of the NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul,
Turkey, June 15–18, pp. 51–58.

Konfrst, Z., 2004. Parallel genetic algorithms: advances, computing trends,
applications and perspectives. In: Proceedings of the IEEE Parallel and
Distributed Processing Symposium, Santa Fe, NM, USA, pp. 162–169.

Liu, H.-B., Tang, Y.-Y., Meng, J., Ji, Y., 2004. Neural networks learning using vbest
model particle swarm optimisation. In: Proceedings of the IEEE International
Conference on Machine Learning and Cybernetics, vol. 5, August, pp. 3157–3159.

Martin, P., 2002. An analysis of random number generators for a hardware
implementation of genetic programming using FPGAs and Handel-C.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
New York, USA, 9–13 July, pp. 837–844.

Mathew, B., Davis, A., Parker, M., 2004. A low power architecture for embedded
perception. In: Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, Washington, DC, USA, pp.
46–56.
MathWorks Inc., 2007. Matlab. /http://www.mathworks.com/S.
Mendes, R., Cortez, P., Rocha, M., Neves, J., 2002. Particle swarms for feedforward

neural network training. In: Proceedings of the International Joint Conference
on Neural Network, vol. 2, Honolulu, HI, USA, May, pp. 1895–1899.

Pena, J., Upegui, A., 2007. A population-oriented architecture for particle swarms.
In: Proceedings of the NASA/ESA Conference on Adaptive Hardware and
Systems, Edinburgh, UK, August, pp. 563–570.

Pena, J., Upegui, A., Sanchez, E., 2006. Particle swarm optimization with discrete
recombination: an online optimizer for evolvable hardware. In: Proceedings of
the NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul,
Turkey, June 15–18, pp. 163–170.

Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients. IEEE
Transactions on Evolutionary Computation 8 (3), 240–255.

Reynolds, P.D., Duren, R.W., Trumbo, M.L., Marks, R.J., 2005. FPGA implementation
of particle swarm optimization for inversion of large neural networks. In:
Proceedings of the IEEE Swarm Intelligence Symposium, Pasadena, TX, USA,
June 8–10, pp. 389–392.

Schutte, J.F., Fregly, B.J., Haftka, R.T., George, A.D., 2003. A parallel particle swarm
optimizer. In: Proceedings of the Congress of Structural and Multidisciplinary
Optimization, Lido di Jesolo, Italy, May, pp. 19–23.

Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D., 2004. Parallel
global optimization with particle swarm algorithm. International Journal for
Numerical Methods in Engineering 61, 2296–2315.

Schwefel, H.P., 1981. Numerical Optimization of Computer Models. Wiley,
New York.

Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer. In: Proceedings of
the IEEE International Conference on Computational Intelligence, Piscataway,
NJ, USA, pp. 69–73.

Song, M.P., Gu, G.C., 2004. Research on particle swarm optimization: a review. In:
Proceedings of the International Conference on Machine Learning and
Cybernetics, vol. 4, August, pp. 2236–2241.

Tommiska, M.T., 2003. Efficient digital implementation of the sigmoid function for
reprogrammable logic. In: Proceedings of the IEE Computers and Digital
Techniques, vol. 150 (6), November, pp. 403–411.

Venter, G., Sobieszczanski-Sobieski, J., 2005. A parallel particle swarm optimiza-
tion algorithm accelerated by asynchronous evaluations. In: Proceedings of the
Congress of Structural and Multidisciplinary Optimization, Brazil, May/June
31–03, pp. 3351–3360.

Widrow, B., Rumelhart, D.E., Lehr, M.A., 1994. Neural networks: applications
in industry, business and science. Communications of the ACM 37 (3),
93–105.

Zhang, T., Benini, L., Micheli, G.D., 2001. Component selection and matching for IP-
based design. In: Proceedings of the IEEE International Conference on Design,
Automation and Test in Europe, Munich, Germany, March, pp. 40–46.

Zhao, F., Ren, Z., Yu, D., Yang, Y., 2005. Application of an improved particle swarm
optimization algorithm for neural network training. In: Proceedings of the IEEE
International Conference on Neural Networks and Brain, vol. 3, Beijing, China,
October, pp. 1693–1698.

Zhu, Z., Mulvaney, D.J., Chouliaras, V., 2006. A novel genetic algorithm designed for
hardware implementation. International Journal of Computational Intelligence
3 (4), 281–288.

Zitzler, E., Teich, J., Bhattacharyya, S.S., 2000. Evolutionary algorithms for the
synthesis of embedded software. IEEE Transactions on Very Large Scale
Integration Systems 8 (4), 452–455.

http://www.mathworks.com/

	Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization
	Introduction
	Previous work
	Particle swarm optimization
	Particle swarm optimizer algorithm
	Discrete particle swarm algorithm
	Asynchronous particle swarm optimization
	Parallel particle swarm optimization

	Realization of parallel PSO framework
	Hardware implementation
	Processing time

	Experimental results
	A real-world application as a case study: neural network training
	Conclusions and future work
	References




